Loading…

Exact and approximate algorithms for helical cone-beam CT

This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2004-07, Vol.49 (13), p.2913-2931
Main Authors: Kudo, Hiroyuki, Rodet, Thomas, Noo, Frédéric, Defrise, Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13
cites cdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13
container_end_page 2931
container_issue 13
container_start_page 2913
container_title Physics in medicine & biology
container_volume 49
creator Kudo, Hiroyuki
Rodet, Thomas
Noo, Frédéric
Defrise, Michel
description This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.
doi_str_mv 10.1088/0031-9155/49/13/011
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15285256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66762619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwC5BQJgakND47duwRVeVDqsRSZsvxBw1KmhCnUvn3ddWqDCCmG-659-4ehG4BTwELkWFMIZXAWJbLDGiGAc7QGCiHlDOOz9H4RIzQVQifOBKC5JdoBIwIRhgfIznfajMkem0T3XV9u60aPbhE1x9tXw2rJiS-7ZOVqyuj68S0a5eWTjfJbHmNLryug7s51gl6f5ovZy_p4u35dfa4SE1O8JByXQhDJGBvSKGpd05ay4XIhcOkKFnJC15gb7HMLTG2pN54bo22vGQ290An6P6QG6_72rgwqKYKxtW1Xrt2ExSPAYSDjCA9gKZvQ-idV10fv-m_FWC1N6b2PtTeh8qlAqqijzh1d4zflI2zPzNHRRF4OABV2526fySpzvoIT3_D_63fAb3ggLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66762619</pqid></control><display><type>article</type><title>Exact and approximate algorithms for helical cone-beam CT</title><source>Institute of Physics</source><creator>Kudo, Hiroyuki ; Rodet, Thomas ; Noo, Frédéric ; Defrise, Michel</creator><creatorcontrib>Kudo, Hiroyuki ; Rodet, Thomas ; Noo, Frédéric ; Defrise, Michel</creatorcontrib><description>This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/49/13/011</identifier><identifier>PMID: 15285256</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Humans ; Image Processing, Computer-Assisted ; Models, Statistical ; Models, Theoretical ; Phantoms, Imaging ; Tomography, Spiral Computed - methods</subject><ispartof>Physics in medicine &amp; biology, 2004-07, Vol.49 (13), p.2913-2931</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</citedby><cites>FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15285256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kudo, Hiroyuki</creatorcontrib><creatorcontrib>Rodet, Thomas</creatorcontrib><creatorcontrib>Noo, Frédéric</creatorcontrib><creatorcontrib>Defrise, Michel</creatorcontrib><title>Exact and approximate algorithms for helical cone-beam CT</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Phantoms, Imaging</subject><subject>Tomography, Spiral Computed - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwC5BQJgakND47duwRVeVDqsRSZsvxBw1KmhCnUvn3ddWqDCCmG-659-4ehG4BTwELkWFMIZXAWJbLDGiGAc7QGCiHlDOOz9H4RIzQVQifOBKC5JdoBIwIRhgfIznfajMkem0T3XV9u60aPbhE1x9tXw2rJiS-7ZOVqyuj68S0a5eWTjfJbHmNLryug7s51gl6f5ovZy_p4u35dfa4SE1O8JByXQhDJGBvSKGpd05ay4XIhcOkKFnJC15gb7HMLTG2pN54bo22vGQ290An6P6QG6_72rgwqKYKxtW1Xrt2ExSPAYSDjCA9gKZvQ-idV10fv-m_FWC1N6b2PtTeh8qlAqqijzh1d4zflI2zPzNHRRF4OABV2526fySpzvoIT3_D_63fAb3ggLw</recordid><startdate>20040707</startdate><enddate>20040707</enddate><creator>Kudo, Hiroyuki</creator><creator>Rodet, Thomas</creator><creator>Noo, Frédéric</creator><creator>Defrise, Michel</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040707</creationdate><title>Exact and approximate algorithms for helical cone-beam CT</title><author>Kudo, Hiroyuki ; Rodet, Thomas ; Noo, Frédéric ; Defrise, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Phantoms, Imaging</topic><topic>Tomography, Spiral Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Hiroyuki</creatorcontrib><creatorcontrib>Rodet, Thomas</creatorcontrib><creatorcontrib>Noo, Frédéric</creatorcontrib><creatorcontrib>Defrise, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Hiroyuki</au><au>Rodet, Thomas</au><au>Noo, Frédéric</au><au>Defrise, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact and approximate algorithms for helical cone-beam CT</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2004-07-07</date><risdate>2004</risdate><volume>49</volume><issue>13</issue><spage>2913</spage><epage>2931</epage><pages>2913-2931</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>15285256</pmid><doi>10.1088/0031-9155/49/13/011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2004-07, Vol.49 (13), p.2913-2931
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_15285256
source Institute of Physics
subjects Algorithms
Humans
Image Processing, Computer-Assisted
Models, Statistical
Models, Theoretical
Phantoms, Imaging
Tomography, Spiral Computed - methods
title Exact and approximate algorithms for helical cone-beam CT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20and%20approximate%20algorithms%20for%20helical%20cone-beam%20CT&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Kudo,%20Hiroyuki&rft.date=2004-07-07&rft.volume=49&rft.issue=13&rft.spage=2913&rft.epage=2931&rft.pages=2913-2931&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/49/13/011&rft_dat=%3Cproquest_pubme%3E66762619%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66762619&rft_id=info:pmid/15285256&rfr_iscdi=true