Loading…
Exact and approximate algorithms for helical cone-beam CT
This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP...
Saved in:
Published in: | Physics in medicine & biology 2004-07, Vol.49 (13), p.2913-2931 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13 |
container_end_page | 2931 |
container_issue | 13 |
container_start_page | 2913 |
container_title | Physics in medicine & biology |
container_volume | 49 |
creator | Kudo, Hiroyuki Rodet, Thomas Noo, Frédéric Defrise, Michel |
description | This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data. |
doi_str_mv | 10.1088/0031-9155/49/13/011 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15285256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66762619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwC5BQJgakND47duwRVeVDqsRSZsvxBw1KmhCnUvn3ddWqDCCmG-659-4ehG4BTwELkWFMIZXAWJbLDGiGAc7QGCiHlDOOz9H4RIzQVQifOBKC5JdoBIwIRhgfIznfajMkem0T3XV9u60aPbhE1x9tXw2rJiS-7ZOVqyuj68S0a5eWTjfJbHmNLryug7s51gl6f5ovZy_p4u35dfa4SE1O8JByXQhDJGBvSKGpd05ay4XIhcOkKFnJC15gb7HMLTG2pN54bo22vGQ290An6P6QG6_72rgwqKYKxtW1Xrt2ExSPAYSDjCA9gKZvQ-idV10fv-m_FWC1N6b2PtTeh8qlAqqijzh1d4zflI2zPzNHRRF4OABV2526fySpzvoIT3_D_63fAb3ggLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66762619</pqid></control><display><type>article</type><title>Exact and approximate algorithms for helical cone-beam CT</title><source>Institute of Physics</source><creator>Kudo, Hiroyuki ; Rodet, Thomas ; Noo, Frédéric ; Defrise, Michel</creator><creatorcontrib>Kudo, Hiroyuki ; Rodet, Thomas ; Noo, Frédéric ; Defrise, Michel</creatorcontrib><description>This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/49/13/011</identifier><identifier>PMID: 15285256</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Humans ; Image Processing, Computer-Assisted ; Models, Statistical ; Models, Theoretical ; Phantoms, Imaging ; Tomography, Spiral Computed - methods</subject><ispartof>Physics in medicine & biology, 2004-07, Vol.49 (13), p.2913-2931</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</citedby><cites>FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15285256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kudo, Hiroyuki</creatorcontrib><creatorcontrib>Rodet, Thomas</creatorcontrib><creatorcontrib>Noo, Frédéric</creatorcontrib><creatorcontrib>Defrise, Michel</creatorcontrib><title>Exact and approximate algorithms for helical cone-beam CT</title><title>Physics in medicine & biology</title><addtitle>Phys Med Biol</addtitle><description>This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Phantoms, Imaging</subject><subject>Tomography, Spiral Computed - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwC5BQJgakND47duwRVeVDqsRSZsvxBw1KmhCnUvn3ddWqDCCmG-659-4ehG4BTwELkWFMIZXAWJbLDGiGAc7QGCiHlDOOz9H4RIzQVQifOBKC5JdoBIwIRhgfIznfajMkem0T3XV9u60aPbhE1x9tXw2rJiS-7ZOVqyuj68S0a5eWTjfJbHmNLryug7s51gl6f5ovZy_p4u35dfa4SE1O8JByXQhDJGBvSKGpd05ay4XIhcOkKFnJC15gb7HMLTG2pN54bo22vGQ290An6P6QG6_72rgwqKYKxtW1Xrt2ExSPAYSDjCA9gKZvQ-idV10fv-m_FWC1N6b2PtTeh8qlAqqijzh1d4zflI2zPzNHRRF4OABV2526fySpzvoIT3_D_63fAb3ggLw</recordid><startdate>20040707</startdate><enddate>20040707</enddate><creator>Kudo, Hiroyuki</creator><creator>Rodet, Thomas</creator><creator>Noo, Frédéric</creator><creator>Defrise, Michel</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040707</creationdate><title>Exact and approximate algorithms for helical cone-beam CT</title><author>Kudo, Hiroyuki ; Rodet, Thomas ; Noo, Frédéric ; Defrise, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Phantoms, Imaging</topic><topic>Tomography, Spiral Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Hiroyuki</creatorcontrib><creatorcontrib>Rodet, Thomas</creatorcontrib><creatorcontrib>Noo, Frédéric</creatorcontrib><creatorcontrib>Defrise, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Hiroyuki</au><au>Rodet, Thomas</au><au>Noo, Frédéric</au><au>Defrise, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact and approximate algorithms for helical cone-beam CT</atitle><jtitle>Physics in medicine & biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2004-07-07</date><risdate>2004</risdate><volume>49</volume><issue>13</issue><spage>2913</spage><epage>2931</epage><pages>2913-2931</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>15285256</pmid><doi>10.1088/0031-9155/49/13/011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2004-07, Vol.49 (13), p.2913-2931 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_pubmed_primary_15285256 |
source | Institute of Physics |
subjects | Algorithms Humans Image Processing, Computer-Assisted Models, Statistical Models, Theoretical Phantoms, Imaging Tomography, Spiral Computed - methods |
title | Exact and approximate algorithms for helical cone-beam CT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20and%20approximate%20algorithms%20for%20helical%20cone-beam%20CT&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Kudo,%20Hiroyuki&rft.date=2004-07-07&rft.volume=49&rft.issue=13&rft.spage=2913&rft.epage=2931&rft.pages=2913-2931&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/49/13/011&rft_dat=%3Cproquest_pubme%3E66762619%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-6a78c2910fc27a3fee9dd68848e027b5b67670fd094d2cdb3fcf6dcad6b5d4f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66762619&rft_id=info:pmid/15285256&rfr_iscdi=true |