Loading…
RNA Polymerase Can Track a DNA Groove during Promoter Search
Many proteins select special DNA sequences to form functional complexes. In one possible mechanism, protein molecules would scan DNA sequences by tracking a groove without complete dissociation. Upon dragging single molecules of DNA over a surface carrying fixed Escherichia coli RNA polymerase holoe...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2004-10, Vol.101 (41), p.14731-14735 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many proteins select special DNA sequences to form functional complexes. In one possible mechanism, protein molecules would scan DNA sequences by tracking a groove without complete dissociation. Upon dragging single molecules of DNA over a surface carrying fixed Escherichia coli RNA polymerase holoenzyme, we detected rotation of individual DNA molecules, providing direct evidence that a DNA-binding protein can track a DNA groove. These results confirm our previous observations of longitudinal movement of RNA polymerase along fixed, extended DNA and, moreover, imply that groove tracking facilitates scanning of DNA sequences. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0406441101 |