Loading…

Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity

Purpose. Brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) hold much promise for the protection of retinal ganglion cells against excitotoxic cell death. We tested the possibility of delivering these growth factors to retinal ganglion cells via an adeno-associated vi...

Full description

Saved in:
Bibliographic Details
Published in:Current eye research 2004-12, Vol.29 (6), p.379-386
Main Authors: Schuettauf, Frank, Vorwerk, Christian, Naskar, Rita, Orlin, Anton, Quinto, Kristine, Zurakowski, David, Dejneka, Nadine S., Klein, Ronald L., Meyer, Edward M., Bennett, Jean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose. Brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) hold much promise for the protection of retinal ganglion cells against excitotoxic cell death. We tested the possibility of delivering these growth factors to retinal ganglion cells via an adeno-associated viral (AAV) vector and tested their efficacy in two models of excitotoxicity. Methods. Rat retinas were infected with AAV vectors encoding bFGF or BDNF. A control vector containing green fluorescent protein (GFP) was injected in the contralateral eye. Eyes were subjected to either an intravitreal injection of N-methyl-D-aspartate (NMDA) or optic nerve crush, and ganglion cell survival was evaluated. Results. AAV.CMV.bFGF and AAV.CBA.BDNF were neuroprotective against NMDA injection 1 month post-treatment. Additionally, AAV.CMV.bFGF was protective against optic nerve crush. Conclusion. AAV-mediated delivery of bFGF and BDNF can promote retinal cell survival following excitotoxic insult.
ISSN:0271-3683
1460-2202
DOI:10.1080/02713680490517872