Loading…

Effects of the tumor inhibitory triterpenoid avicin G on cell integrity, cytokinesis, and protein ubiquitination in fission yeast

Avicins comprise a class of triterpenoid compounds that exhibit tumor inhibitory activity. Here we show that avicin G is inhibitory to growth of the fission yeast Schizosaccharomyces pombe. S. pombe cells treated with a lethal concentration of avicin G (20 micromolar) exhibited a shrunken morphology...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-09, Vol.102 (36), p.12771-12776
Main Authors: Gutterman, J.U, Lai, H.T, Yang, P, Haridas, V, Gaikwad, A, Marcus, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Avicins comprise a class of triterpenoid compounds that exhibit tumor inhibitory activity. Here we show that avicin G is inhibitory to growth of the fission yeast Schizosaccharomyces pombe. S. pombe cells treated with a lethal concentration of avicin G (20 micromolar) exhibited a shrunken morphology, indicating that avicin G adversely affects cell integrity. Cells treated with a sublethal concentration of avicin G (6.5 micromolar) exhibited a strong cytokinesis-defective phenotype (multiseptated cells), as well as cell morphology defects. These phenotypes bear resemblance to those resulting from loss of Rho1 GTPase function in S. pombe. Indeed, Rho1-deficient S. pombe cells were strongly hypersensitive to avicin G, suggesting that the compound may perturb Rho1-dependent processes. Consistent with previously observed effects in human Jurkat T cells, avicin G treatment resulted in hyperaccumulation of ubiquitinated proteins in S. pombe cells. Interestingly, proteasome-defective S. pombe mutants were not markedly hypersensitive to avicin G, whereas an anaphase-promoting complex (mitotic ubiquitin ligase) mutant exhibited avicin G resistance, suggesting that the increase in levels of ubiquitinated proteins resulting from avicin G treatment may be due to increased protein ubiquitination, rather than inhibition of 26S proteasome activity. Mutants defective in the cAMP/PKA pathway also exhibited resistance to avicin G. Our results suggest that S. pombe will be a useful model organism for elucidating molecular targets of avicin G and serve as a guide to clinical application where dysfunctional aspects of Rho and/or ubiquitination function have been demonstrated as in cancer, fibrosis, and inflammation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0505758102