Loading…

On the Euclidean distance of images

We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2005-08, Vol.27 (8), p.1334-1339
Main Authors: Wang, Liwei, Zhang, Yan, Feng, Jufu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2005.165