Loading…
Unsupervised segmentation based on robust estimation and color active contour models
One of the most commonly used clinical tests performed today is the routine evaluation of peripheral blood smears. In this paper, we investigate the design, development, and implementation of a robust color gradient vector flow (GVF) active contour model for performing segmentation, using a database...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2005-09, Vol.9 (3), p.475-486 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most commonly used clinical tests performed today is the routine evaluation of peripheral blood smears. In this paper, we investigate the design, development, and implementation of a robust color gradient vector flow (GVF) active contour model for performing segmentation, using a database of 1791 imaged cells. The algorithms developed for this research operate in Luv color space, and introduce a color gradient and L/sub 2/E robust estimation into the traditional GVF snake. The accuracy of the new model was compared with the segmentation results using a mean-shift approach, the traditional color GVF snake, and several other commonly used segmentation strategies. The unsupervised robust color snake with L/sub 2/E robust estimation was shown to provide results which were superior to the other unsupervised approaches, and was comparable with supervised segmentation, as judged by a panel of human experts. |
---|---|
ISSN: | 1089-7771 2168-2194 1558-0032 2168-2208 |
DOI: | 10.1109/TITB.2005.847515 |