Loading…

evaluation of the metabolic basis of aflatoxin B₁ toxicity by using buffalo granulocytes and agranulocytes in vitro

This study was aimed at monitoring cytotoxic changes in buffalo leukocyte subpopulations exposed to aflatoxin B1 (AFB1), since no such information is available for this species. The effects of AFB1 on glutathione (GSH) S-transferase, Ca2+Mg2+ATPase and protein synthesis in leukocyte subpopulations,...

Full description

Saved in:
Bibliographic Details
Published in:Alternatives to laboratory animals 2005-08, Vol.33 (4), p.387-390
Main Authors: More, T, Reddy, G.R, Kumar, S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study was aimed at monitoring cytotoxic changes in buffalo leukocyte subpopulations exposed to aflatoxin B1 (AFB1), since no such information is available for this species. The effects of AFB1 on glutathione (GSH) S-transferase, Ca2+Mg2+ATPase and protein synthesis in leukocyte subpopulations, namely, mononuclear (MN) cells and polymorphonuclear (PMN) cells isolated from the blood of the domestic buffalo (Bos bubalis), were studied. The cells were separated by using Ficoll-Paque and incubated in the presence of AFB1. GSH S-transferase activity was found to increase in cells exposed to AFB1, but there was no difference in activity between MN and PMN cells. PMN cell ATPase activity increased after AFB1 treatment, whereas no such effect was observed in the MN cells, which showed higher basal levels of ATPase activity. In the presence of AFB1, all the cells showed significant decreases in 14C-leucine incorporation, but the MN cells showed higher 14C-leucine incorporation than the PMN cells. Nevertheless, both cell types were affected by AFB1 and participated in its detoxification. There was also an appreciable decrease in the release of myeloperoxidase by activated PMN cells in the presence of AFB1.
ISSN:0261-1929
DOI:10.1177/026119290503300410