Loading…

Robust estimation approach for blind denoising

This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatia...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2005-11, Vol.14 (11), p.1755-1765
Main Author: Rabie, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3
cites cdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3
container_end_page 1765
container_issue 11
container_start_page 1755
container_title IEEE transactions on image processing
container_volume 14
creator Rabie, T.
description This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.
doi_str_mv 10.1109/TIP.2005.857276
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16279176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1518941</ieee_id><sourcerecordid>28057786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</originalsourceid><addsrcrecordid>eNqFkUtLAzEURoMotj7WLgQZBN3NNO_HUoqPQkGRug6ZSaJTpjM1mVn4702ZQsGNqwTuyb3fPQHgCsECIahmq8VbgSFkhWQCC34EpkhRlENI8XG6QyZygaiagLMY1xAiyhA_BRPEsVBI8Cko3rtyiH3mYl9vTF93bWa229CZ6ivzXcjKpm5tZl3b1bFuPy_AiTdNdJf78xx8PD2u5i_58vV5MX9Y5hWFpM9LYrw1VAkOsaKeM8s5wdYw5axlVFpCaOlcJb11xhBKPXECKmM4V1DakpyD-7FvivI9pHB6U8fKNY1pXTdEzaUQCiP1L4hlciAkT-DtH3DdDaFNS2gpKcMpN07QbISq0MUYnNfbkLSEH42g3gnXSbjeCdej8PTiZt92KDfOHvi94QTc7QETK9P4YNqqjgdO4GRI7EZfj1ztnDuUGZLpQ8kvSn6PzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884524032</pqid></control><display><type>article</type><title>Robust estimation approach for blind denoising</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rabie, T.</creator><creatorcontrib>Rabie, T.</creatorcontrib><description>This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.857276</identifier><identifier>PMID: 16279176</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Blind denoising ; Computer Simulation ; Degradation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Gaussian noise ; Gaussian noise filtering ; Image denoising ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image restoration ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Models, Statistical ; Noise reduction ; Noise robustness ; Optical noise ; outliers ; redescending estimators ; robust denoising ; robust statistics ; Signal and communications theory ; Signal processing ; Signal, noise ; Spatial coherence ; Statistics ; Stochastic Processes ; Telecommunications and information theory ; Wiener filter</subject><ispartof>IEEE transactions on image processing, 2005-11, Vol.14 (11), p.1755-1765</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</citedby><cites>FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1518941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17229472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16279176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabie, T.</creatorcontrib><title>Robust estimation approach for blind denoising</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Blind denoising</subject><subject>Computer Simulation</subject><subject>Degradation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Gaussian noise filtering</subject><subject>Image denoising</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Models, Statistical</subject><subject>Noise reduction</subject><subject>Noise robustness</subject><subject>Optical noise</subject><subject>outliers</subject><subject>redescending estimators</subject><subject>robust denoising</subject><subject>robust statistics</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spatial coherence</subject><subject>Statistics</subject><subject>Stochastic Processes</subject><subject>Telecommunications and information theory</subject><subject>Wiener filter</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEURoMotj7WLgQZBN3NNO_HUoqPQkGRug6ZSaJTpjM1mVn4702ZQsGNqwTuyb3fPQHgCsECIahmq8VbgSFkhWQCC34EpkhRlENI8XG6QyZygaiagLMY1xAiyhA_BRPEsVBI8Cko3rtyiH3mYl9vTF93bWa229CZ6ivzXcjKpm5tZl3b1bFuPy_AiTdNdJf78xx8PD2u5i_58vV5MX9Y5hWFpM9LYrw1VAkOsaKeM8s5wdYw5axlVFpCaOlcJb11xhBKPXECKmM4V1DakpyD-7FvivI9pHB6U8fKNY1pXTdEzaUQCiP1L4hlciAkT-DtH3DdDaFNS2gpKcMpN07QbISq0MUYnNfbkLSEH42g3gnXSbjeCdej8PTiZt92KDfOHvi94QTc7QETK9P4YNqqjgdO4GRI7EZfj1ztnDuUGZLpQ8kvSn6PzA</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Rabie, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Robust estimation approach for blind denoising</title><author>Rabie, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Blind denoising</topic><topic>Computer Simulation</topic><topic>Degradation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Gaussian noise filtering</topic><topic>Image denoising</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Models, Statistical</topic><topic>Noise reduction</topic><topic>Noise robustness</topic><topic>Optical noise</topic><topic>outliers</topic><topic>redescending estimators</topic><topic>robust denoising</topic><topic>robust statistics</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spatial coherence</topic><topic>Statistics</topic><topic>Stochastic Processes</topic><topic>Telecommunications and information theory</topic><topic>Wiener filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabie, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabie, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation approach for blind denoising</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>14</volume><issue>11</issue><spage>1755</spage><epage>1765</epage><pages>1755-1765</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16279176</pmid><doi>10.1109/TIP.2005.857276</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2005-11, Vol.14 (11), p.1755-1765
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_16279176
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Artificial Intelligence
Blind denoising
Computer Simulation
Degradation
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Gaussian noise
Gaussian noise filtering
Image denoising
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image restoration
Information Storage and Retrieval - methods
Information, signal and communications theory
Models, Statistical
Noise reduction
Noise robustness
Optical noise
outliers
redescending estimators
robust denoising
robust statistics
Signal and communications theory
Signal processing
Signal, noise
Spatial coherence
Statistics
Stochastic Processes
Telecommunications and information theory
Wiener filter
title Robust estimation approach for blind denoising
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20approach%20for%20blind%20denoising&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Rabie,%20T.&rft.date=2005-11-01&rft.volume=14&rft.issue=11&rft.spage=1755&rft.epage=1765&rft.pages=1755-1765&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.857276&rft_dat=%3Cproquest_pubme%3E28057786%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884524032&rft_id=info:pmid/16279176&rft_ieee_id=1518941&rfr_iscdi=true