Loading…
Robust estimation approach for blind denoising
This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatia...
Saved in:
Published in: | IEEE transactions on image processing 2005-11, Vol.14 (11), p.1755-1765 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3 |
container_end_page | 1765 |
container_issue | 11 |
container_start_page | 1755 |
container_title | IEEE transactions on image processing |
container_volume | 14 |
creator | Rabie, T. |
description | This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented. |
doi_str_mv | 10.1109/TIP.2005.857276 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16279176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1518941</ieee_id><sourcerecordid>28057786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</originalsourceid><addsrcrecordid>eNqFkUtLAzEURoMotj7WLgQZBN3NNO_HUoqPQkGRug6ZSaJTpjM1mVn4702ZQsGNqwTuyb3fPQHgCsECIahmq8VbgSFkhWQCC34EpkhRlENI8XG6QyZygaiagLMY1xAiyhA_BRPEsVBI8Cko3rtyiH3mYl9vTF93bWa229CZ6ivzXcjKpm5tZl3b1bFuPy_AiTdNdJf78xx8PD2u5i_58vV5MX9Y5hWFpM9LYrw1VAkOsaKeM8s5wdYw5axlVFpCaOlcJb11xhBKPXECKmM4V1DakpyD-7FvivI9pHB6U8fKNY1pXTdEzaUQCiP1L4hlciAkT-DtH3DdDaFNS2gpKcMpN07QbISq0MUYnNfbkLSEH42g3gnXSbjeCdej8PTiZt92KDfOHvi94QTc7QETK9P4YNqqjgdO4GRI7EZfj1ztnDuUGZLpQ8kvSn6PzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884524032</pqid></control><display><type>article</type><title>Robust estimation approach for blind denoising</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rabie, T.</creator><creatorcontrib>Rabie, T.</creatorcontrib><description>This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.857276</identifier><identifier>PMID: 16279176</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Blind denoising ; Computer Simulation ; Degradation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Gaussian noise ; Gaussian noise filtering ; Image denoising ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image restoration ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Models, Statistical ; Noise reduction ; Noise robustness ; Optical noise ; outliers ; redescending estimators ; robust denoising ; robust statistics ; Signal and communications theory ; Signal processing ; Signal, noise ; Spatial coherence ; Statistics ; Stochastic Processes ; Telecommunications and information theory ; Wiener filter</subject><ispartof>IEEE transactions on image processing, 2005-11, Vol.14 (11), p.1755-1765</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</citedby><cites>FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1518941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17229472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16279176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabie, T.</creatorcontrib><title>Robust estimation approach for blind denoising</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Blind denoising</subject><subject>Computer Simulation</subject><subject>Degradation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Gaussian noise filtering</subject><subject>Image denoising</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Models, Statistical</subject><subject>Noise reduction</subject><subject>Noise robustness</subject><subject>Optical noise</subject><subject>outliers</subject><subject>redescending estimators</subject><subject>robust denoising</subject><subject>robust statistics</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spatial coherence</subject><subject>Statistics</subject><subject>Stochastic Processes</subject><subject>Telecommunications and information theory</subject><subject>Wiener filter</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEURoMotj7WLgQZBN3NNO_HUoqPQkGRug6ZSaJTpjM1mVn4702ZQsGNqwTuyb3fPQHgCsECIahmq8VbgSFkhWQCC34EpkhRlENI8XG6QyZygaiagLMY1xAiyhA_BRPEsVBI8Cko3rtyiH3mYl9vTF93bWa229CZ6ivzXcjKpm5tZl3b1bFuPy_AiTdNdJf78xx8PD2u5i_58vV5MX9Y5hWFpM9LYrw1VAkOsaKeM8s5wdYw5axlVFpCaOlcJb11xhBKPXECKmM4V1DakpyD-7FvivI9pHB6U8fKNY1pXTdEzaUQCiP1L4hlciAkT-DtH3DdDaFNS2gpKcMpN07QbISq0MUYnNfbkLSEH42g3gnXSbjeCdej8PTiZt92KDfOHvi94QTc7QETK9P4YNqqjgdO4GRI7EZfj1ztnDuUGZLpQ8kvSn6PzA</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Rabie, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Robust estimation approach for blind denoising</title><author>Rabie, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Blind denoising</topic><topic>Computer Simulation</topic><topic>Degradation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Gaussian noise filtering</topic><topic>Image denoising</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Models, Statistical</topic><topic>Noise reduction</topic><topic>Noise robustness</topic><topic>Optical noise</topic><topic>outliers</topic><topic>redescending estimators</topic><topic>robust denoising</topic><topic>robust statistics</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spatial coherence</topic><topic>Statistics</topic><topic>Stochastic Processes</topic><topic>Telecommunications and information theory</topic><topic>Wiener filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabie, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabie, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation approach for blind denoising</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>14</volume><issue>11</issue><spage>1755</spage><epage>1765</epage><pages>1755-1765</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16279176</pmid><doi>10.1109/TIP.2005.857276</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2005-11, Vol.14 (11), p.1755-1765 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_16279176 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Artificial Intelligence Blind denoising Computer Simulation Degradation Detection, estimation, filtering, equalization, prediction Exact sciences and technology Gaussian noise Gaussian noise filtering Image denoising Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image restoration Information Storage and Retrieval - methods Information, signal and communications theory Models, Statistical Noise reduction Noise robustness Optical noise outliers redescending estimators robust denoising robust statistics Signal and communications theory Signal processing Signal, noise Spatial coherence Statistics Stochastic Processes Telecommunications and information theory Wiener filter |
title | Robust estimation approach for blind denoising |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20approach%20for%20blind%20denoising&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Rabie,%20T.&rft.date=2005-11-01&rft.volume=14&rft.issue=11&rft.spage=1755&rft.epage=1765&rft.pages=1755-1765&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.857276&rft_dat=%3Cproquest_pubme%3E28057786%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-b3afda49760294f65d6632da59edd548d334beec8fdeaa344f3e709aa66908db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884524032&rft_id=info:pmid/16279176&rft_ieee_id=1518941&rfr_iscdi=true |