Loading…
Neural-network-based adaptive hybrid-reflectance model for 3-D surface reconstruction
This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network automatically combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2005-11, Vol.16 (6), p.1601-1615 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network automatically combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors are applied to enforce integrability when reconstructing 3-D objects. Facial images and images of other general objects were used to test the proposed approach. The experimental results demonstrate that the proposed neural-network-based adaptive hybrid-reflectance model can be successfully applied to objects generally, and perform 3-D surface reconstruction better than some existing approaches. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2005.853333 |