Loading…
Scoparone inhibits PMA-induced IL-8 and MCP-1 production through suppression of NF-kappaB activation in U937 cells
Scoparone is a major component of the shoot of Artemisia capillaris (Compositae), which has been used for the treatment of hepatitis and biliary tract infection in oriental countries. In this study, the effects of scoparone on the expression of interleukin-8 (IL-8) and monocyte chemotactic protein-1...
Saved in:
Published in: | Life sciences (1973) 2006-05, Vol.78 (25), p.2937 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Scoparone is a major component of the shoot of Artemisia capillaris (Compositae), which has been used for the treatment of hepatitis and biliary tract infection in oriental countries. In this study, the effects of scoparone on the expression of interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) and activation of nuclear factor-kappaB (NF-kappaB) were examined in U937 human monocytes activated with phorbol 12-myristate 13-acetate (PMA). Scoparone (5-100 microM) had no cytotoxic effect in unstimulated cells and concentration-dependently reversed PMA-induced toxicity in the cells stimulated with PMA. Scoparone concentration-dependently reduced the release of IL-8 and MCP-1 protein and expression of IL-8 and MCP-1 mRNA levels induced by PMA. Moreover, scoparone inhibited the levels of NF-kappaB-DNA complex and NF-kappaB activity in the cells stimulated with PMA in a concentration-dependent manner. Scoparone dose-dependently inhibited the phosphorylation of IkappaBalpha and nuclear translocation of NF-kappaB1 p50, RelA p65, and c-Rel p75. These data suggest that scoparone may inhibit the expression of chemokines (IL-8 and MCP-1) in PMA-stimulated U937 cells and a potential mechanism of scoparone may be inhibition of NF-kappaB activation, which is linked to inhibition of NF-kappaB subunits (NF-kappaB1 p50, RelA p65, and c-Rel p75) translocation via suppression of IkappaBalpha phosphorylation. |
---|---|
ISSN: | 0024-3205 |