Loading…
Beta2-adrenergic receptor activation delays wound healing
Keratinocytes migrate directionally into the wound bed to initiate re-epithelialization, necessary for wound closure and restoration of barrier function. They solely express the beta2-adrenergic receptor (beta2-AR) subtype of beta-ARs and can also synthesize beta-AR agonists generating a hormonal me...
Saved in:
Published in: | The FASEB journal 2006-01, Vol.20 (1), p.76 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Keratinocytes migrate directionally into the wound bed to initiate re-epithelialization, necessary for wound closure and restoration of barrier function. They solely express the beta2-adrenergic receptor (beta2-AR) subtype of beta-ARs and can also synthesize beta-AR agonists generating a hormonal mediator network in the skin. Emerging studies from our laboratory demonstrate that beta-AR agonists decrease keratinocyte migration via a protein phosphatase (PP) 2A-dependent mechanism. Here we have extended our investigations to observe the effects of beta2-AR activation on keratinocyte polarization, migration, and ERK phosphorylation at the wound edge, cytoskeletal organization, phospho-ERK intracellular localization, proliferation, human skin wound re-epithelialization, wound-induced ERK phosphorylation, and murine skin wound healing. We demonstrate that in keratinocytes, beta2-AR activation is anti-motogenic and anti-mitogenic with both mechanisms being PP2A dependent. beta2-AR activation dramatically alters the organization of the actin cytoskeleton and prevents localization of phospho-ERK to the lamellipodial edge and its colocalization with vinculin. Finally, we demonstrate a beta2-AR-mediated delay in re-epithelialization and decrease in wound-induced epidermal ERK phosphorylation in human skin wounds and a delay in re-epithelialization in murine tail-clip wounds. Our work uncovers novel keratinocyte biology and a previously unrecognized role for the adrenergic hormonal mediator network in the wound repair process. |
---|---|
ISSN: | 1530-6860 |