Loading…
Supervised range-constrained thresholding
A novel thresholding approach to confine the intensity frequency range of the object based on supervision is introduced. It consists of three steps. First, the region of interest (ROI) is determined in the image. Then, from the histogram of the ROI, the frequency range in which the proportion of the...
Saved in:
Published in: | IEEE transactions on image processing 2006-01, Vol.15 (1), p.228-240 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel thresholding approach to confine the intensity frequency range of the object based on supervision is introduced. It consists of three steps. First, the region of interest (ROI) is determined in the image. Then, from the histogram of the ROI, the frequency range in which the proportion of the background to the ROI varies is estimated through supervision. Finally, the threshold is determined by minimizing the classification error within the constrained variable background range. The performance of the approach has been validated against 54 brain MR images, including images with severe intensity inhomogeneity and/or noise, CT chest images, and the Cameraman image. Compared with nonsupervised thresholding methods, the proposed approach is substantially more robust and more reliable. It is also computationally efficient and can be applied to a wide class of computer vision problems, such as character recognition, fingerprint identification, and segmentation of a wide variety of medical images. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2005.860348 |