Loading…
Learning-based deformable registration of MR brain images
This paper presents a learning-based method for deformable registration of magnetic resonance (MR) brain images. There are two novelties in the proposed registration method. First, a set of best-scale geometric features are selected for each point in the brain, in order to facilitate correspondence...
Saved in:
Published in: | IEEE transactions on medical imaging 2006-09, Vol.25 (9), p.1145-1157 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a learning-based method for deformable registration of magnetic resonance (MR) brain images. There are two novelties in the proposed registration method. First, a set of best-scale geometric features are selected for each point in the brain, in order to facilitate correspondence detection during the registration procedure. This is achieved by optimizing an energy function that requires each point to have its best-scale geometric features consistent over the corresponding points in the training samples, and at the same time distinctive from those of nearby points in the neighborhood. Second, the active points used to drive the brain registration are hierarchically selected during the registration procedure, based on their saliency and consistency measures. That is, the image points with salient and consistent features (across different individuals) are considered for the initial registration of two images, while other less salient and consistent points join the registration procedure later. By incorporating these two novel strategies into the framework of the HAMMER registration algorithm, the registration accuracy has been improved according to the results on simulated brain data, and also visible improvement is observed particularly in the cortical regions of real brain data |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2006.879320 |