Loading…

Multigate transcranial doppler ultrasound system with real-time embolic signal identification and archival

An integrated system for acquisition and processing of intracranial and extracranial Doppler signals and automatic embolic signal detection has been developed. The hardware basis of the system is a purpose-built acquisition/processing board that includes a multigate Doppler unit controlled through a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2006-10, Vol.53 (10), p.1853-1861
Main Authors: Lingke Fan, Boni, E., Tortoli, P., Evans, D.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An integrated system for acquisition and processing of intracranial and extracranial Doppler signals and automatic embolic signal detection has been developed. The hardware basis of the system is a purpose-built acquisition/processing board that includes a multigate Doppler unit controlled through a computer. The signal-processing engine of the system contains a fast Fourier transform (FFT)-based, spectral-analysis unit and an embolic signal-detection unit using expert system reasoning theory. The system is designed so that up to four receive gates from a single transducer can be used to provide useful reasoning information to the embolic signal-detection unit. Alternatively, two transducers can be used simultaneously, either for bilateral transcranial Doppler (TCD) investigations or for simultaneous intraand extracranial investigation of different arteries. The structure of the software will allow the future implementation of embolus detection algorithms that use the information from all four channels when a single transducer is used, or of independent embolus detection in two sets of two channels when two transducers are used. The user-friendly system has been tested in-vitro, and it has demonstrated a 93.6% sensitivity for micro-embolic signal (MES) identification. Preliminary in-vivo results also are encouraging
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2006.117