Loading…
An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design
An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comp...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2007-01, Vol.18 (1), p.266-283 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3 |
container_end_page | 283 |
container_issue | 1 |
container_start_page | 266 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 18 |
creator | Basterretxea, K. Tarela, J.M. del Campo, I. Bosque, G. |
description | An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities |
doi_str_mv | 10.1109/TNN.2006.884680 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17278477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4049811</ieee_id><sourcerecordid>19594737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgFlur5x4EGQq1p9l9-TH5cSzbrhXKerCCt5CZeVOmzGbWZEK7_etN3cWCBz0l5H3yyMuXkBMKM0rBzG9XqxkDkDOthdTwihxRI2gJYPjrvAdRlYYxdUjexngPQEUF8g05pIopLZQ6Ij8ufHH1uMHQr9FPbii-TandFqMvVqMfeo8uFMvkm6nPR4txvUmT-73vxlCsMAU3zJfp6WlbXLvQPriAxSXG_s6_IwedGyK-36_H5Pvy6nZxXd58_fxlcXFTNoJXU8lR1dLJquZSt5yZts2v5MIoKR2VNW9b7KpaCaYkdBJygUPNKKKumjxBx4_J-a7vJow_E8bJrvvY4DA4j2OKVmuQWkqts_z0Tym10dQY-l9ITWWE4irD07_g_ZiCz-NaQxmjghmW0XyHmjDGGLCzm_zZLmwtBfscos0h2ucQ7S7EfOPjvm2q19i--H1qGZztgYuNG7rgfNPHF6cFVMrI7D7sXI-If8oi_6KmlP8CB3GrSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912214292</pqid></control><display><type>article</type><title>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Basterretxea, K. ; Tarela, J.M. ; del Campo, I. ; Bosque, G.</creator><creatorcontrib>Basterretxea, K. ; Tarela, J.M. ; del Campo, I. ; Bosque, G.</creatorcontrib><description>An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2006.884680</identifier><identifier>PMID: 17278477</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation algorithms ; Approximation capability ; Artificial intelligence ; Artificial neural networks ; Backpropagation algorithms ; centered recursive interpolation (CRI) ; Computational modeling ; Computer architecture ; Computer science; control theory; systems ; Computer-Aided Design ; Connectionism. Neural networks ; Electronics ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Fuzzy Logic ; Fuzzy systems ; Gaussian function ; Hardware ; Kernel ; Neural networks ; Neural Networks (Computer) ; neurofuzzy hardware ; Nonlinear Dynamics ; Performance analysis ; sigmoid function ; Signal Processing, Computer-Assisted - instrumentation ; Studies</subject><ispartof>IEEE transaction on neural networks and learning systems, 2007-01, Vol.18 (1), p.266-283</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</citedby><cites>FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4049811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18405796$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17278477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basterretxea, K.</creatorcontrib><creatorcontrib>Tarela, J.M.</creatorcontrib><creatorcontrib>del Campo, I.</creatorcontrib><creatorcontrib>Bosque, G.</creatorcontrib><title>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Approximation capability</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Backpropagation algorithms</subject><subject>centered recursive interpolation (CRI)</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer science; control theory; systems</subject><subject>Computer-Aided Design</subject><subject>Connectionism. Neural networks</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Logic</subject><subject>Fuzzy systems</subject><subject>Gaussian function</subject><subject>Hardware</subject><subject>Kernel</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>neurofuzzy hardware</subject><subject>Nonlinear Dynamics</subject><subject>Performance analysis</subject><subject>sigmoid function</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Studies</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFDEUB_AgFlur5x4EGQq1p9l9-TH5cSzbrhXKerCCt5CZeVOmzGbWZEK7_etN3cWCBz0l5H3yyMuXkBMKM0rBzG9XqxkDkDOthdTwihxRI2gJYPjrvAdRlYYxdUjexngPQEUF8g05pIopLZQ6Ij8ufHH1uMHQr9FPbii-TandFqMvVqMfeo8uFMvkm6nPR4txvUmT-73vxlCsMAU3zJfp6WlbXLvQPriAxSXG_s6_IwedGyK-36_H5Pvy6nZxXd58_fxlcXFTNoJXU8lR1dLJquZSt5yZts2v5MIoKR2VNW9b7KpaCaYkdBJygUPNKKKumjxBx4_J-a7vJow_E8bJrvvY4DA4j2OKVmuQWkqts_z0Tym10dQY-l9ITWWE4irD07_g_ZiCz-NaQxmjghmW0XyHmjDGGLCzm_zZLmwtBfscos0h2ucQ7S7EfOPjvm2q19i--H1qGZztgYuNG7rgfNPHF6cFVMrI7D7sXI-If8oi_6KmlP8CB3GrSQ</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Basterretxea, K.</creator><creator>Tarela, J.M.</creator><creator>del Campo, I.</creator><creator>Bosque, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200701</creationdate><title>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</title><author>Basterretxea, K. ; Tarela, J.M. ; del Campo, I. ; Bosque, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Approximation capability</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Backpropagation algorithms</topic><topic>centered recursive interpolation (CRI)</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer science; control theory; systems</topic><topic>Computer-Aided Design</topic><topic>Connectionism. Neural networks</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Logic</topic><topic>Fuzzy systems</topic><topic>Gaussian function</topic><topic>Hardware</topic><topic>Kernel</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>neurofuzzy hardware</topic><topic>Nonlinear Dynamics</topic><topic>Performance analysis</topic><topic>sigmoid function</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Basterretxea, K.</creatorcontrib><creatorcontrib>Tarela, J.M.</creatorcontrib><creatorcontrib>del Campo, I.</creatorcontrib><creatorcontrib>Bosque, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basterretxea, K.</au><au>Tarela, J.M.</au><au>del Campo, I.</au><au>Bosque, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2007-01</date><risdate>2007</risdate><volume>18</volume><issue>1</issue><spage>266</spage><epage>283</epage><pages>266-283</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17278477</pmid><doi>10.1109/TNN.2006.884680</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2007-01, Vol.18 (1), p.266-283 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_17278477 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Algorithms Applied sciences Approximation algorithms Approximation capability Artificial intelligence Artificial neural networks Backpropagation algorithms centered recursive interpolation (CRI) Computational modeling Computer architecture Computer science control theory systems Computer-Aided Design Connectionism. Neural networks Electronics Equipment Design Equipment Failure Analysis Exact sciences and technology Fuzzy Logic Fuzzy systems Gaussian function Hardware Kernel Neural networks Neural Networks (Computer) neurofuzzy hardware Nonlinear Dynamics Performance analysis sigmoid function Signal Processing, Computer-Assisted - instrumentation Studies |
title | An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Experimental%20Study%20on%20Nonlinear%20Function%20Computation%20for%20Neural/Fuzzy%20Hardware%20Design&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Basterretxea,%20K.&rft.date=2007-01&rft.volume=18&rft.issue=1&rft.spage=266&rft.epage=283&rft.pages=266-283&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2006.884680&rft_dat=%3Cproquest_pubme%3E19594737%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912214292&rft_id=info:pmid/17278477&rft_ieee_id=4049811&rfr_iscdi=true |