Loading…

An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design

An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2007-01, Vol.18 (1), p.266-283
Main Authors: Basterretxea, K., Tarela, J.M., del Campo, I., Bosque, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3
cites cdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3
container_end_page 283
container_issue 1
container_start_page 266
container_title IEEE transaction on neural networks and learning systems
container_volume 18
creator Basterretxea, K.
Tarela, J.M.
del Campo, I.
Bosque, G.
description An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities
doi_str_mv 10.1109/TNN.2006.884680
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17278477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4049811</ieee_id><sourcerecordid>19594737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgFlur5x4EGQq1p9l9-TH5cSzbrhXKerCCt5CZeVOmzGbWZEK7_etN3cWCBz0l5H3yyMuXkBMKM0rBzG9XqxkDkDOthdTwihxRI2gJYPjrvAdRlYYxdUjexngPQEUF8g05pIopLZQ6Ij8ufHH1uMHQr9FPbii-TandFqMvVqMfeo8uFMvkm6nPR4txvUmT-73vxlCsMAU3zJfp6WlbXLvQPriAxSXG_s6_IwedGyK-36_H5Pvy6nZxXd58_fxlcXFTNoJXU8lR1dLJquZSt5yZts2v5MIoKR2VNW9b7KpaCaYkdBJygUPNKKKumjxBx4_J-a7vJow_E8bJrvvY4DA4j2OKVmuQWkqts_z0Tym10dQY-l9ITWWE4irD07_g_ZiCz-NaQxmjghmW0XyHmjDGGLCzm_zZLmwtBfscos0h2ucQ7S7EfOPjvm2q19i--H1qGZztgYuNG7rgfNPHF6cFVMrI7D7sXI-If8oi_6KmlP8CB3GrSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912214292</pqid></control><display><type>article</type><title>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Basterretxea, K. ; Tarela, J.M. ; del Campo, I. ; Bosque, G.</creator><creatorcontrib>Basterretxea, K. ; Tarela, J.M. ; del Campo, I. ; Bosque, G.</creatorcontrib><description>An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2006.884680</identifier><identifier>PMID: 17278477</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation algorithms ; Approximation capability ; Artificial intelligence ; Artificial neural networks ; Backpropagation algorithms ; centered recursive interpolation (CRI) ; Computational modeling ; Computer architecture ; Computer science; control theory; systems ; Computer-Aided Design ; Connectionism. Neural networks ; Electronics ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Fuzzy Logic ; Fuzzy systems ; Gaussian function ; Hardware ; Kernel ; Neural networks ; Neural Networks (Computer) ; neurofuzzy hardware ; Nonlinear Dynamics ; Performance analysis ; sigmoid function ; Signal Processing, Computer-Assisted - instrumentation ; Studies</subject><ispartof>IEEE transaction on neural networks and learning systems, 2007-01, Vol.18 (1), p.266-283</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</citedby><cites>FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4049811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18405796$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17278477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basterretxea, K.</creatorcontrib><creatorcontrib>Tarela, J.M.</creatorcontrib><creatorcontrib>del Campo, I.</creatorcontrib><creatorcontrib>Bosque, G.</creatorcontrib><title>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Approximation capability</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Backpropagation algorithms</subject><subject>centered recursive interpolation (CRI)</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer science; control theory; systems</subject><subject>Computer-Aided Design</subject><subject>Connectionism. Neural networks</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Logic</subject><subject>Fuzzy systems</subject><subject>Gaussian function</subject><subject>Hardware</subject><subject>Kernel</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>neurofuzzy hardware</subject><subject>Nonlinear Dynamics</subject><subject>Performance analysis</subject><subject>sigmoid function</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Studies</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFDEUB_AgFlur5x4EGQq1p9l9-TH5cSzbrhXKerCCt5CZeVOmzGbWZEK7_etN3cWCBz0l5H3yyMuXkBMKM0rBzG9XqxkDkDOthdTwihxRI2gJYPjrvAdRlYYxdUjexngPQEUF8g05pIopLZQ6Ij8ufHH1uMHQr9FPbii-TandFqMvVqMfeo8uFMvkm6nPR4txvUmT-73vxlCsMAU3zJfp6WlbXLvQPriAxSXG_s6_IwedGyK-36_H5Pvy6nZxXd58_fxlcXFTNoJXU8lR1dLJquZSt5yZts2v5MIoKR2VNW9b7KpaCaYkdBJygUPNKKKumjxBx4_J-a7vJow_E8bJrvvY4DA4j2OKVmuQWkqts_z0Tym10dQY-l9ITWWE4irD07_g_ZiCz-NaQxmjghmW0XyHmjDGGLCzm_zZLmwtBfscos0h2ucQ7S7EfOPjvm2q19i--H1qGZztgYuNG7rgfNPHF6cFVMrI7D7sXI-If8oi_6KmlP8CB3GrSQ</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Basterretxea, K.</creator><creator>Tarela, J.M.</creator><creator>del Campo, I.</creator><creator>Bosque, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200701</creationdate><title>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</title><author>Basterretxea, K. ; Tarela, J.M. ; del Campo, I. ; Bosque, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Approximation capability</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Backpropagation algorithms</topic><topic>centered recursive interpolation (CRI)</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer science; control theory; systems</topic><topic>Computer-Aided Design</topic><topic>Connectionism. Neural networks</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Logic</topic><topic>Fuzzy systems</topic><topic>Gaussian function</topic><topic>Hardware</topic><topic>Kernel</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>neurofuzzy hardware</topic><topic>Nonlinear Dynamics</topic><topic>Performance analysis</topic><topic>sigmoid function</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Basterretxea, K.</creatorcontrib><creatorcontrib>Tarela, J.M.</creatorcontrib><creatorcontrib>del Campo, I.</creatorcontrib><creatorcontrib>Bosque, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basterretxea, K.</au><au>Tarela, J.M.</au><au>del Campo, I.</au><au>Bosque, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2007-01</date><risdate>2007</risdate><volume>18</volume><issue>1</issue><spage>266</spage><epage>283</epage><pages>266-283</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17278477</pmid><doi>10.1109/TNN.2006.884680</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2007-01, Vol.18 (1), p.266-283
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_pubmed_primary_17278477
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Algorithms
Applied sciences
Approximation algorithms
Approximation capability
Artificial intelligence
Artificial neural networks
Backpropagation algorithms
centered recursive interpolation (CRI)
Computational modeling
Computer architecture
Computer science
control theory
systems
Computer-Aided Design
Connectionism. Neural networks
Electronics
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Fuzzy Logic
Fuzzy systems
Gaussian function
Hardware
Kernel
Neural networks
Neural Networks (Computer)
neurofuzzy hardware
Nonlinear Dynamics
Performance analysis
sigmoid function
Signal Processing, Computer-Assisted - instrumentation
Studies
title An Experimental Study on Nonlinear Function Computation for Neural/Fuzzy Hardware Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Experimental%20Study%20on%20Nonlinear%20Function%20Computation%20for%20Neural/Fuzzy%20Hardware%20Design&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Basterretxea,%20K.&rft.date=2007-01&rft.volume=18&rft.issue=1&rft.spage=266&rft.epage=283&rft.pages=266-283&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2006.884680&rft_dat=%3Cproquest_pubme%3E19594737%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-3e7b6a65b368d329dd001349766a16b3ddef5b742760f6049730b21ee85c847f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912214292&rft_id=info:pmid/17278477&rft_ieee_id=4049811&rfr_iscdi=true