Loading…
(-)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-kappaB signaling
Monocyte chemotactic protein-1 (MCP-1) is a potent chemoattractant for monocytes and plays a key role in various inflammatory responses, including atherosclerosis. In this study, we examined the effect of (-)-epigallocatechin-3-gallate (EGCG), a major green tea catechin, on the expression of MCP-1 i...
Saved in:
Published in: | Life sciences (1973) 2007-05, Vol.80 (21), p.1957 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monocyte chemotactic protein-1 (MCP-1) is a potent chemoattractant for monocytes and plays a key role in various inflammatory responses, including atherosclerosis. In this study, we examined the effect of (-)-epigallocatechin-3-gallate (EGCG), a major green tea catechin, on the expression of MCP-1 in human endothelial ECV304 cells. EGCG markedly inhibited the phorbol 12-myristate 13-acetate (PMA)-induced MCP-1 mRNA and protein levels in a dose-dependent manner. EGCG was also found to reduce the MCP-1 transcriptional activity. The upregulation of MCP-1 by PMA was significantly inhibited by blockade of P38 mitogen-activated protein kinase (MAPK) and NF-kappaB, but not by blockade of extracellular-signal-regulated kinase and c-Jun N-terminal kinase pathway. Furthermore, The PMA-induced p38 MAPK and NF-kappaB activation were obviously attenuated after pretreating ECV304 cells with EGCG. The conditioned media from the endothelial ECV304 cells treated with PMA could remarkably stimulate the migration of THP-1 monocytes and this effect was partially abrogated by MCP-1 neutralizing antibodies. Moreover, the media from the EGCG-pretreated ECV304 cells lost the stimulatory activity for THP-1 migration. These results suggest that EGCG may exert an anti-inflammatory effect in endothelial cells by controlling MCP-1 expression, at least in part, mediated through the suppression of p38 MAPK and NF-kappaB activation. |
---|---|
ISSN: | 0024-3205 |