Loading…
Estimating Body Segment Orientation by Applying Inertial and Magnetic Sensing Near Ferromagnetic Materials
Inertial and magnetic sensors are very suitable for ambulatory monitoring of human posture and movements. However, ferromagnetic materials near the sensor disturb the local magnetic field and, therefore, the orientation estimation. A Kalman-based fusion algorithm was used to obtain dynamic orientati...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2007-09, Vol.15 (3), p.469-471 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inertial and magnetic sensors are very suitable for ambulatory monitoring of human posture and movements. However, ferromagnetic materials near the sensor disturb the local magnetic field and, therefore, the orientation estimation. A Kalman-based fusion algorithm was used to obtain dynamic orientations and to minimize the effect of magnetic disturbances. This paper compares the orientation output of the sensor fusion using three-dimensional inertial and magnetic sensors against a laboratory bound opto-kinetic system (Vicon) in a simulated work environment. With the tested methods, the difference between the optical reference system and the output of the algorithm was 2.6deg root mean square (rms) when no metal was near the sensor module. Near a large metal object instant errors up to 50deg were measured when no compensation was applied. Using a magnetic disturbance model, the error reduced significantly to 3.6deg rms. |
---|---|
ISSN: | 1534-4320 1558-0210 |
DOI: | 10.1109/TNSRE.2007.903946 |