Loading…

Monte Carlo based water/medium stopping-power ratios for various ICRP and ICRU tissues

Water/medium stopping-power ratios, s(w,m), have been calculated for several ICRP and ICRU tissues, namely adipose tissue, brain, cortical bone, liver, lung (deflated and inflated) and spongiosa. The considered clinical beams were 6 and 18 MV x-rays and the field size was 10 x 10 cm(2). Fluence dist...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2007-11, Vol.52 (21), p.6475-6483
Main Authors: Fernández-Varea, José M, Carrasco, Pablo, Panettieri, Vanessa, Brualla, Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water/medium stopping-power ratios, s(w,m), have been calculated for several ICRP and ICRU tissues, namely adipose tissue, brain, cortical bone, liver, lung (deflated and inflated) and spongiosa. The considered clinical beams were 6 and 18 MV x-rays and the field size was 10 x 10 cm(2). Fluence distributions were scored at a depth of 10 cm using the Monte Carlo code PENELOPE. The collision stopping powers for the studied tissues were evaluated employing the formalism of ICRU Report 37 (1984 Stopping Powers for Electrons and Positrons (Bethesda, MD: ICRU)). The Bragg-Gray values of s(w,m) calculated with these ingredients range from about 0.98 (adipose tissue) to nearly 1.14 (cortical bone), displaying a rather small variation with beam quality. Excellent agreement, to within 0.1%, is found with stopping-power ratios reported by Siebers et al (2000a Phys. Med. Biol. 45 983-95) for cortical bone, inflated lung and spongiosa. In the case of cortical bone, s(w,m) changes approximately 2% when either ICRP or ICRU compositions are adopted, whereas the stopping-power ratios of lung, brain and adipose tissue are less sensitive to the selected composition. The mass density of lung also influences the calculated values of s(w,m), reducing them by around 1% (6 MV) and 2% (18 MV) when going from deflated to inflated lung.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/52/21/009