Loading…
Development and validation of a Monte Carlo simulation of photon transport in an Anger camera
The geometric component of the point spread function (PSF) of a gamma camera collimator can be determined analytically, and the penetration component can be calculated readily by numerical ray-tracing. A Monte Carlo simulation of photon transport which includes collimator scatter is developed. The s...
Saved in:
Published in: | IEEE transactions on medical imaging 1990-12, Vol.9 (4), p.430-438 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The geometric component of the point spread function (PSF) of a gamma camera collimator can be determined analytically, and the penetration component can be calculated readily by numerical ray-tracing. A Monte Carlo simulation of photon transport which includes collimator scatter is developed. The simulation was implemented with an array processor which propagates up to 1024 photons in parallel, allowing accurate estimates of the total radial PSF in less than a day. The simulation was tested by imaging monoenergetic point sources of Tc-99m, Cr-51, and Sr-85 (140, 320, and 514 keV, respectively) on a General Electric Star Cam with low-energy, general-purpose, and medium-energy collimators. Comparisons of measured and simulated PSFs demonstrate the validity of the model and the significance of collimator scatter in the degradation of image quality.< > |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/42.61758 |