Loading…

Facial modeling from an uncalibrated face image using flexible generic parameterized facial models

The paper presents an optimization approach for facial modeling from an uncalibrated face image using flexible generic parameterized facial models (FGPFMs). An FGPFM consists of a topological structure and geometric knowledge of human faces. The topological description consists of a set of well-desi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2001-10, Vol.31 (5), p.706-719
Main Authors: Ho, S Y, Huang, H L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-4f7ba9d960ce8d17e3edb6120303d3166c7518b96030df3e3f01ce15c2903fc43
cites cdi_FETCH-LOGICAL-c457t-4f7ba9d960ce8d17e3edb6120303d3166c7518b96030df3e3f01ce15c2903fc43
container_end_page 719
container_issue 5
container_start_page 706
container_title IEEE transactions on cybernetics
container_volume 31
creator Ho, S Y
Huang, H L
description The paper presents an optimization approach for facial modeling from an uncalibrated face image using flexible generic parameterized facial models (FGPFMs). An FGPFM consists of a topological structure and geometric knowledge of human faces. The topological description consists of a set of well-designed triangular polygons with a multilayered elastic structure in which the microstructural information can be expressed without complicated facial features. All the geometric values are obtained from a set of training facial models using statistical approaches and genetic algorithms. FGPFM can be easily modified using facial features as FGPFMs parameters to create an accurate specific three-dimensional (3D) facial model from only a photograph of an individual with a yawed face. In addition, the facial modeling problem is formulated as a parameter optimization problem. A hybrid optimization approach based on the Taguchi method and a best-first search algorithm is used to accelerate the search for a near optimal solution. Furthermore, sensitivity analysis and experimental results with texture mapping demonstrate the effectiveness of the proposed approach.
doi_str_mv 10.1109/3477.956032
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18244835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>956032</ieee_id><sourcerecordid>28912716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-4f7ba9d960ce8d17e3edb6120303d3166c7518b96030df3e3f01ce15c2903fc43</originalsourceid><addsrcrecordid>eNqN0s1L5TAQAPCwrPi1nva2hyV40INUZ5K0SY4ifoHgxT2XNJ0-Kv14m7yC-tebZx8Ke1g9ZWB-mYSZYewnwiki2DOptD61eQFSfGO7aBVmoKz4nmIwMlMK7Q7bi_ERACxYvc120AiljMx3WXXlfOs63o81de2w4E0Ye-4GPg3edW0V3Ipq3jhPvO3dgvgU31RHT23VEV_QQKH1fOmC62mV4pfZvxeNP9hW47pIB5tzn_25uny4uMnu7q9vL87vMq9yvcpUoytna1uAJ1OjJkl1VaAACbKWWBRe52iqlJdQN5JkA-gJcy8syMYruc-O57rLMP6dKK7Kvo2eus4NNE6xtKiK3AqhP5VaKpEDaJnk0X-lMBaFxuILUKTX098_hYVOU9MmwcN_4OM4hSF1sDRGaZs6sq52MiMfxhgDNeUypDmF5xKhXG9Hud6Oct6OpH9vSk5VT_WH3axDAr9m0BLRe3pz-xUQv7r_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884791660</pqid></control><display><type>article</type><title>Facial modeling from an uncalibrated face image using flexible generic parameterized facial models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ho, S Y ; Huang, H L</creator><creatorcontrib>Ho, S Y ; Huang, H L</creatorcontrib><description>The paper presents an optimization approach for facial modeling from an uncalibrated face image using flexible generic parameterized facial models (FGPFMs). An FGPFM consists of a topological structure and geometric knowledge of human faces. The topological description consists of a set of well-designed triangular polygons with a multilayered elastic structure in which the microstructural information can be expressed without complicated facial features. All the geometric values are obtained from a set of training facial models using statistical approaches and genetic algorithms. FGPFM can be easily modified using facial features as FGPFMs parameters to create an accurate specific three-dimensional (3D) facial model from only a photograph of an individual with a yawed face. In addition, the facial modeling problem is formulated as a parameter optimization problem. A hybrid optimization approach based on the Taguchi method and a best-first search algorithm is used to accelerate the search for a near optimal solution. Furthermore, sensitivity analysis and experimental results with texture mapping demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/3477.956032</identifier><identifier>PMID: 18244835</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceleration ; Cybernetics ; Face detection ; Facial ; Facial features ; Genetic algorithms ; Humans ; Image coding ; Mathematical models ; Optimization ; Optimization methods ; Searching ; Sensitivity analysis ; Signal processing algorithms ; Solid modeling ; Studies ; Three dimensional ; Topology</subject><ispartof>IEEE transactions on cybernetics, 2001-10, Vol.31 (5), p.706-719</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-4f7ba9d960ce8d17e3edb6120303d3166c7518b96030df3e3f01ce15c2903fc43</citedby><cites>FETCH-LOGICAL-c457t-4f7ba9d960ce8d17e3edb6120303d3166c7518b96030df3e3f01ce15c2903fc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/956032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, S Y</creatorcontrib><creatorcontrib>Huang, H L</creatorcontrib><title>Facial modeling from an uncalibrated face image using flexible generic parameterized facial models</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>The paper presents an optimization approach for facial modeling from an uncalibrated face image using flexible generic parameterized facial models (FGPFMs). An FGPFM consists of a topological structure and geometric knowledge of human faces. The topological description consists of a set of well-designed triangular polygons with a multilayered elastic structure in which the microstructural information can be expressed without complicated facial features. All the geometric values are obtained from a set of training facial models using statistical approaches and genetic algorithms. FGPFM can be easily modified using facial features as FGPFMs parameters to create an accurate specific three-dimensional (3D) facial model from only a photograph of an individual with a yawed face. In addition, the facial modeling problem is formulated as a parameter optimization problem. A hybrid optimization approach based on the Taguchi method and a best-first search algorithm is used to accelerate the search for a near optimal solution. Furthermore, sensitivity analysis and experimental results with texture mapping demonstrate the effectiveness of the proposed approach.</description><subject>Acceleration</subject><subject>Cybernetics</subject><subject>Face detection</subject><subject>Facial</subject><subject>Facial features</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Image coding</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Searching</subject><subject>Sensitivity analysis</subject><subject>Signal processing algorithms</subject><subject>Solid modeling</subject><subject>Studies</subject><subject>Three dimensional</subject><subject>Topology</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqN0s1L5TAQAPCwrPi1nva2hyV40INUZ5K0SY4ifoHgxT2XNJ0-Kv14m7yC-tebZx8Ke1g9ZWB-mYSZYewnwiki2DOptD61eQFSfGO7aBVmoKz4nmIwMlMK7Q7bi_ERACxYvc120AiljMx3WXXlfOs63o81de2w4E0Ye-4GPg3edW0V3Ipq3jhPvO3dgvgU31RHT23VEV_QQKH1fOmC62mV4pfZvxeNP9hW47pIB5tzn_25uny4uMnu7q9vL87vMq9yvcpUoytna1uAJ1OjJkl1VaAACbKWWBRe52iqlJdQN5JkA-gJcy8syMYruc-O57rLMP6dKK7Kvo2eus4NNE6xtKiK3AqhP5VaKpEDaJnk0X-lMBaFxuILUKTX098_hYVOU9MmwcN_4OM4hSF1sDRGaZs6sq52MiMfxhgDNeUypDmF5xKhXG9Hud6Oct6OpH9vSk5VT_WH3axDAr9m0BLRe3pz-xUQv7r_</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Ho, S Y</creator><creator>Huang, H L</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20011001</creationdate><title>Facial modeling from an uncalibrated face image using flexible generic parameterized facial models</title><author>Ho, S Y ; Huang, H L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-4f7ba9d960ce8d17e3edb6120303d3166c7518b96030df3e3f01ce15c2903fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acceleration</topic><topic>Cybernetics</topic><topic>Face detection</topic><topic>Facial</topic><topic>Facial features</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Image coding</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Searching</topic><topic>Sensitivity analysis</topic><topic>Signal processing algorithms</topic><topic>Solid modeling</topic><topic>Studies</topic><topic>Three dimensional</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, S Y</creatorcontrib><creatorcontrib>Huang, H L</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, S Y</au><au>Huang, H L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial modeling from an uncalibrated face image using flexible generic parameterized facial models</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2001-10-01</date><risdate>2001</risdate><volume>31</volume><issue>5</issue><spage>706</spage><epage>719</epage><pages>706-719</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>The paper presents an optimization approach for facial modeling from an uncalibrated face image using flexible generic parameterized facial models (FGPFMs). An FGPFM consists of a topological structure and geometric knowledge of human faces. The topological description consists of a set of well-designed triangular polygons with a multilayered elastic structure in which the microstructural information can be expressed without complicated facial features. All the geometric values are obtained from a set of training facial models using statistical approaches and genetic algorithms. FGPFM can be easily modified using facial features as FGPFMs parameters to create an accurate specific three-dimensional (3D) facial model from only a photograph of an individual with a yawed face. In addition, the facial modeling problem is formulated as a parameter optimization problem. A hybrid optimization approach based on the Taguchi method and a best-first search algorithm is used to accelerate the search for a near optimal solution. Furthermore, sensitivity analysis and experimental results with texture mapping demonstrate the effectiveness of the proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18244835</pmid><doi>10.1109/3477.956032</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2001-10, Vol.31 (5), p.706-719
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_pubmed_primary_18244835
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Cybernetics
Face detection
Facial
Facial features
Genetic algorithms
Humans
Image coding
Mathematical models
Optimization
Optimization methods
Searching
Sensitivity analysis
Signal processing algorithms
Solid modeling
Studies
Three dimensional
Topology
title Facial modeling from an uncalibrated face image using flexible generic parameterized facial models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20modeling%20from%20an%20uncalibrated%20face%20image%20using%20flexible%20generic%20parameterized%20facial%20models&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Ho,%20S%20Y&rft.date=2001-10-01&rft.volume=31&rft.issue=5&rft.spage=706&rft.epage=719&rft.pages=706-719&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/3477.956032&rft_dat=%3Cproquest_pubme%3E28912716%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-4f7ba9d960ce8d17e3edb6120303d3166c7518b96030df3e3f01ce15c2903fc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884791660&rft_id=info:pmid/18244835&rft_ieee_id=956032&rfr_iscdi=true