Loading…
Comparison of texture features based on Gabor filters
Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating c...
Saved in:
Published in: | IEEE transactions on image processing 2002-10, Vol.11 (10), p.1160-1167 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3 |
container_end_page | 1167 |
container_issue | 10 |
container_start_page | 1160 |
container_title | IEEE transactions on image processing |
container_volume | 11 |
creator | Grigorescu, S.E. Petkov, N. Kruizinga, P. |
description | Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours. |
doi_str_mv | 10.1109/TIP.2002.804262 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18249688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1042386</ieee_id><sourcerecordid>734185133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgivuhZw-CNIJ66tlUPitHGXRdWNDDeg7pdAV66Zkek27Y_femmYEVD3qqhDypSngZewN8A8Dd1d3Nj43gXGyQK2HEM3YOTkHL6-55XXNtWwvKnbGLUu45B6XBvGRngEI5g3jO9HbaHUIeyrRvptTM9DAvmZpEYa2l6UKhvqmH16GbcpOGcaZcXrEXKYyFXp_qJfv59cvd9lt7-_36Zvv5to0a7dxGrrAD1acEIsheG-FMQDICTeekJR7BGGuUUX2nIwWwUSphdZ94hxo7eck-Hfse8vRroTL73VAijWPY07QU77h1praT_5VWKkANcpUf_ykFCkDObYXv_4L305L39b8eUUmrncKKro4o5qmUTMkf8rAL-dED92tEvkbk14j8MaJ6492p7dLtqH_yp0wq-HACocQwphz2cShPTjoEqdb3vT26gYj-GKuERCN_AyJWnqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884375948</pqid></control><display><type>article</type><title>Comparison of texture features based on Gabor filters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Grigorescu, S.E. ; Petkov, N. ; Kruizinga, P.</creator><creatorcontrib>Grigorescu, S.E. ; Petkov, N. ; Kruizinga, P.</creatorcontrib><description>Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2002.804262</identifier><identifier>PMID: 18249688</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Band pass filters ; Diffraction gratings ; Exact sciences and technology ; Feature based ; Filtering ; Frequency domain analysis ; Gabor filters ; Gratings ; Gratings (spectra) ; Image processing ; Image segmentation ; Image texture analysis ; Information, signal and communications theory ; Nonlinear filters ; Operators ; Robustness ; Segmentation ; Signal processing ; Surface layer ; Telecommunications and information theory ; Texture ; Two dimensional displays</subject><ispartof>IEEE transactions on image processing, 2002-10, Vol.11 (10), p.1160-1167</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</citedby><cites>FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1042386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13981347$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigorescu, S.E.</creatorcontrib><creatorcontrib>Petkov, N.</creatorcontrib><creatorcontrib>Kruizinga, P.</creatorcontrib><title>Comparison of texture features based on Gabor filters</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.</description><subject>Applied sciences</subject><subject>Band pass filters</subject><subject>Diffraction gratings</subject><subject>Exact sciences and technology</subject><subject>Feature based</subject><subject>Filtering</subject><subject>Frequency domain analysis</subject><subject>Gabor filters</subject><subject>Gratings</subject><subject>Gratings (spectra)</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Image texture analysis</subject><subject>Information, signal and communications theory</subject><subject>Nonlinear filters</subject><subject>Operators</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Two dimensional displays</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgivuhZw-CNIJ66tlUPitHGXRdWNDDeg7pdAV66Zkek27Y_femmYEVD3qqhDypSngZewN8A8Dd1d3Nj43gXGyQK2HEM3YOTkHL6-55XXNtWwvKnbGLUu45B6XBvGRngEI5g3jO9HbaHUIeyrRvptTM9DAvmZpEYa2l6UKhvqmH16GbcpOGcaZcXrEXKYyFXp_qJfv59cvd9lt7-_36Zvv5to0a7dxGrrAD1acEIsheG-FMQDICTeekJR7BGGuUUX2nIwWwUSphdZ94hxo7eck-Hfse8vRroTL73VAijWPY07QU77h1praT_5VWKkANcpUf_ykFCkDObYXv_4L305L39b8eUUmrncKKro4o5qmUTMkf8rAL-dED92tEvkbk14j8MaJ6492p7dLtqH_yp0wq-HACocQwphz2cShPTjoEqdb3vT26gYj-GKuERCN_AyJWnqQ</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Grigorescu, S.E.</creator><creator>Petkov, N.</creator><creator>Kruizinga, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021001</creationdate><title>Comparison of texture features based on Gabor filters</title><author>Grigorescu, S.E. ; Petkov, N. ; Kruizinga, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Band pass filters</topic><topic>Diffraction gratings</topic><topic>Exact sciences and technology</topic><topic>Feature based</topic><topic>Filtering</topic><topic>Frequency domain analysis</topic><topic>Gabor filters</topic><topic>Gratings</topic><topic>Gratings (spectra)</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Image texture analysis</topic><topic>Information, signal and communications theory</topic><topic>Nonlinear filters</topic><topic>Operators</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigorescu, S.E.</creatorcontrib><creatorcontrib>Petkov, N.</creatorcontrib><creatorcontrib>Kruizinga, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigorescu, S.E.</au><au>Petkov, N.</au><au>Kruizinga, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of texture features based on Gabor filters</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>11</volume><issue>10</issue><spage>1160</spage><epage>1167</epage><pages>1160-1167</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18249688</pmid><doi>10.1109/TIP.2002.804262</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2002-10, Vol.11 (10), p.1160-1167 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_18249688 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Band pass filters Diffraction gratings Exact sciences and technology Feature based Filtering Frequency domain analysis Gabor filters Gratings Gratings (spectra) Image processing Image segmentation Image texture analysis Information, signal and communications theory Nonlinear filters Operators Robustness Segmentation Signal processing Surface layer Telecommunications and information theory Texture Two dimensional displays |
title | Comparison of texture features based on Gabor filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20texture%20features%20based%20on%20Gabor%20filters&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Grigorescu,%20S.E.&rft.date=2002-10-01&rft.volume=11&rft.issue=10&rft.spage=1160&rft.epage=1167&rft.pages=1160-1167&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2002.804262&rft_dat=%3Cproquest_pubme%3E734185133%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884375948&rft_id=info:pmid/18249688&rft_ieee_id=1042386&rfr_iscdi=true |