Loading…

Comparison of texture features based on Gabor filters

Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2002-10, Vol.11 (10), p.1160-1167
Main Authors: Grigorescu, S.E., Petkov, N., Kruizinga, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3
cites cdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3
container_end_page 1167
container_issue 10
container_start_page 1160
container_title IEEE transactions on image processing
container_volume 11
creator Grigorescu, S.E.
Petkov, N.
Kruizinga, P.
description Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.
doi_str_mv 10.1109/TIP.2002.804262
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18249688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1042386</ieee_id><sourcerecordid>734185133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgivuhZw-CNIJ66tlUPitHGXRdWNDDeg7pdAV66Zkek27Y_femmYEVD3qqhDypSngZewN8A8Dd1d3Nj43gXGyQK2HEM3YOTkHL6-55XXNtWwvKnbGLUu45B6XBvGRngEI5g3jO9HbaHUIeyrRvptTM9DAvmZpEYa2l6UKhvqmH16GbcpOGcaZcXrEXKYyFXp_qJfv59cvd9lt7-_36Zvv5to0a7dxGrrAD1acEIsheG-FMQDICTeekJR7BGGuUUX2nIwWwUSphdZ94hxo7eck-Hfse8vRroTL73VAijWPY07QU77h1praT_5VWKkANcpUf_ykFCkDObYXv_4L305L39b8eUUmrncKKro4o5qmUTMkf8rAL-dED92tEvkbk14j8MaJ6492p7dLtqH_yp0wq-HACocQwphz2cShPTjoEqdb3vT26gYj-GKuERCN_AyJWnqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884375948</pqid></control><display><type>article</type><title>Comparison of texture features based on Gabor filters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Grigorescu, S.E. ; Petkov, N. ; Kruizinga, P.</creator><creatorcontrib>Grigorescu, S.E. ; Petkov, N. ; Kruizinga, P.</creatorcontrib><description>Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2002.804262</identifier><identifier>PMID: 18249688</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Band pass filters ; Diffraction gratings ; Exact sciences and technology ; Feature based ; Filtering ; Frequency domain analysis ; Gabor filters ; Gratings ; Gratings (spectra) ; Image processing ; Image segmentation ; Image texture analysis ; Information, signal and communications theory ; Nonlinear filters ; Operators ; Robustness ; Segmentation ; Signal processing ; Surface layer ; Telecommunications and information theory ; Texture ; Two dimensional displays</subject><ispartof>IEEE transactions on image processing, 2002-10, Vol.11 (10), p.1160-1167</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</citedby><cites>FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1042386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13981347$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigorescu, S.E.</creatorcontrib><creatorcontrib>Petkov, N.</creatorcontrib><creatorcontrib>Kruizinga, P.</creatorcontrib><title>Comparison of texture features based on Gabor filters</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.</description><subject>Applied sciences</subject><subject>Band pass filters</subject><subject>Diffraction gratings</subject><subject>Exact sciences and technology</subject><subject>Feature based</subject><subject>Filtering</subject><subject>Frequency domain analysis</subject><subject>Gabor filters</subject><subject>Gratings</subject><subject>Gratings (spectra)</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Image texture analysis</subject><subject>Information, signal and communications theory</subject><subject>Nonlinear filters</subject><subject>Operators</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Two dimensional displays</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgivuhZw-CNIJ66tlUPitHGXRdWNDDeg7pdAV66Zkek27Y_femmYEVD3qqhDypSngZewN8A8Dd1d3Nj43gXGyQK2HEM3YOTkHL6-55XXNtWwvKnbGLUu45B6XBvGRngEI5g3jO9HbaHUIeyrRvptTM9DAvmZpEYa2l6UKhvqmH16GbcpOGcaZcXrEXKYyFXp_qJfv59cvd9lt7-_36Zvv5to0a7dxGrrAD1acEIsheG-FMQDICTeekJR7BGGuUUX2nIwWwUSphdZ94hxo7eck-Hfse8vRroTL73VAijWPY07QU77h1praT_5VWKkANcpUf_ykFCkDObYXv_4L305L39b8eUUmrncKKro4o5qmUTMkf8rAL-dED92tEvkbk14j8MaJ6492p7dLtqH_yp0wq-HACocQwphz2cShPTjoEqdb3vT26gYj-GKuERCN_AyJWnqQ</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Grigorescu, S.E.</creator><creator>Petkov, N.</creator><creator>Kruizinga, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021001</creationdate><title>Comparison of texture features based on Gabor filters</title><author>Grigorescu, S.E. ; Petkov, N. ; Kruizinga, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Band pass filters</topic><topic>Diffraction gratings</topic><topic>Exact sciences and technology</topic><topic>Feature based</topic><topic>Filtering</topic><topic>Frequency domain analysis</topic><topic>Gabor filters</topic><topic>Gratings</topic><topic>Gratings (spectra)</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Image texture analysis</topic><topic>Information, signal and communications theory</topic><topic>Nonlinear filters</topic><topic>Operators</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigorescu, S.E.</creatorcontrib><creatorcontrib>Petkov, N.</creatorcontrib><creatorcontrib>Kruizinga, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigorescu, S.E.</au><au>Petkov, N.</au><au>Kruizinga, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of texture features based on Gabor filters</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>11</volume><issue>10</issue><spage>1160</spage><epage>1167</epage><pages>1160-1167</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18249688</pmid><doi>10.1109/TIP.2002.804262</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2002-10, Vol.11 (10), p.1160-1167
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_18249688
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Band pass filters
Diffraction gratings
Exact sciences and technology
Feature based
Filtering
Frequency domain analysis
Gabor filters
Gratings
Gratings (spectra)
Image processing
Image segmentation
Image texture analysis
Information, signal and communications theory
Nonlinear filters
Operators
Robustness
Segmentation
Signal processing
Surface layer
Telecommunications and information theory
Texture
Two dimensional displays
title Comparison of texture features based on Gabor filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20texture%20features%20based%20on%20Gabor%20filters&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Grigorescu,%20S.E.&rft.date=2002-10-01&rft.volume=11&rft.issue=10&rft.spage=1160&rft.epage=1167&rft.pages=1160-1167&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2002.804262&rft_dat=%3Cproquest_pubme%3E734185133%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-c048b14dff12a3d56296a8e6286b937e0c16676464db5cea17c34275df0b858b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884375948&rft_id=info:pmid/18249688&rft_ieee_id=1042386&rfr_iscdi=true