Loading…
High-order and multilayer perceptron initialization
Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter o...
Saved in:
Published in: | IEEE transactions on neural networks 1997-03, Vol.8 (2), p.349-359 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3 |
container_end_page | 359 |
container_issue | 2 |
container_start_page | 349 |
container_title | IEEE transactions on neural networks |
container_volume | 8 |
creator | Thimm, G. Fiesler, E. |
description | Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times. |
doi_str_mv | 10.1109/72.557673 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18255638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>557673</ieee_id><sourcerecordid>734251940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</originalsourceid><addsrcrecordid>eNqF0L9PAyEUB3BiNLZWB1cH08FoHK7yHgcco2nUmjRx0flCOU4x90u4DvWvl6aXumlCAi98-AKPkHOgMwCq7iTOOJdCsgMyBpVCQqlih3FNU54oRDkiJyF8Ugopp-KYjCBDzgXLxoQt3PtH0vrC-qluimm9rnpX6U0sO-uN7XrfNlPXuN7pyn3r3rXNKTkqdRXs2TBPyNvjw-t8kSxfnp7n98vEpCj7JEvLlZCWGrXCAkSWIS1RgxEaOCgbBwJSUaZcFqgYj1VhClBolIJ4iE3IzS638-3X2oY-r10wtqp0Y9t1yCVLMSalNMrrPyVmjAFF-T8UnEkVXzMhtztofBuCt2XeeVdrv8mB5tum5xLzXdOjvRxC16vaFr9y6HIEVwPQweiq9LoxLuwdCgacb39xsWPOWrvfHS75AQDKjs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26537929</pqid></control><display><type>article</type><title>High-order and multilayer perceptron initialization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Thimm, G. ; Fiesler, E.</creator><creatorcontrib>Thimm, G. ; Fiesler, E.</creatorcontrib><description>Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.557673</identifier><identifier>PMID: 18255638</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Benchmark testing ; Computer science; control theory; systems ; Connectionism. Neural networks ; Convergence ; Exact sciences and technology ; Feedforward neural networks ; Multi-layer neural network ; Multilayer perceptrons ; Network topology ; Neural networks ; Optimization methods ; Proposals</subject><ispartof>IEEE transactions on neural networks, 1997-03, Vol.8 (2), p.349-359</ispartof><rights>1997 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</citedby><cites>FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/557673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2631550$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thimm, G.</creatorcontrib><creatorcontrib>Fiesler, E.</creatorcontrib><title>High-order and multilayer perceptron initialization</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Benchmark testing</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Feedforward neural networks</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Optimization methods</subject><subject>Proposals</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0L9PAyEUB3BiNLZWB1cH08FoHK7yHgcco2nUmjRx0flCOU4x90u4DvWvl6aXumlCAi98-AKPkHOgMwCq7iTOOJdCsgMyBpVCQqlih3FNU54oRDkiJyF8Ugopp-KYjCBDzgXLxoQt3PtH0vrC-qluimm9rnpX6U0sO-uN7XrfNlPXuN7pyn3r3rXNKTkqdRXs2TBPyNvjw-t8kSxfnp7n98vEpCj7JEvLlZCWGrXCAkSWIS1RgxEaOCgbBwJSUaZcFqgYj1VhClBolIJ4iE3IzS638-3X2oY-r10wtqp0Y9t1yCVLMSalNMrrPyVmjAFF-T8UnEkVXzMhtztofBuCt2XeeVdrv8mB5tum5xLzXdOjvRxC16vaFr9y6HIEVwPQweiq9LoxLuwdCgacb39xsWPOWrvfHS75AQDKjs4</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Thimm, G.</creator><creator>Fiesler, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>High-order and multilayer perceptron initialization</title><author>Thimm, G. ; Fiesler, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Benchmark testing</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Feedforward neural networks</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Optimization methods</topic><topic>Proposals</topic><toplevel>online_resources</toplevel><creatorcontrib>Thimm, G.</creatorcontrib><creatorcontrib>Fiesler, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thimm, G.</au><au>Fiesler, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order and multilayer perceptron initialization</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>8</volume><issue>2</issue><spage>349</spage><epage>359</epage><pages>349-359</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18255638</pmid><doi>10.1109/72.557673</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transactions on neural networks, 1997-03, Vol.8 (2), p.349-359 |
issn | 1045-9227 1941-0093 |
language | eng |
recordid | cdi_pubmed_primary_18255638 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial intelligence Benchmark testing Computer science control theory systems Connectionism. Neural networks Convergence Exact sciences and technology Feedforward neural networks Multi-layer neural network Multilayer perceptrons Network topology Neural networks Optimization methods Proposals |
title | High-order and multilayer perceptron initialization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20and%20multilayer%20perceptron%20initialization&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Thimm,%20G.&rft.date=1997-03-01&rft.volume=8&rft.issue=2&rft.spage=349&rft.epage=359&rft.pages=349-359&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.557673&rft_dat=%3Cproquest_pubme%3E734251940%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26537929&rft_id=info:pmid/18255638&rft_ieee_id=557673&rfr_iscdi=true |