Loading…

High-order and multilayer perceptron initialization

Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural networks 1997-03, Vol.8 (2), p.349-359
Main Authors: Thimm, G., Fiesler, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3
cites cdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3
container_end_page 359
container_issue 2
container_start_page 349
container_title IEEE transactions on neural networks
container_volume 8
creator Thimm, G.
Fiesler, E.
description Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.
doi_str_mv 10.1109/72.557673
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18255638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>557673</ieee_id><sourcerecordid>734251940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</originalsourceid><addsrcrecordid>eNqF0L9PAyEUB3BiNLZWB1cH08FoHK7yHgcco2nUmjRx0flCOU4x90u4DvWvl6aXumlCAi98-AKPkHOgMwCq7iTOOJdCsgMyBpVCQqlih3FNU54oRDkiJyF8Ugopp-KYjCBDzgXLxoQt3PtH0vrC-qluimm9rnpX6U0sO-uN7XrfNlPXuN7pyn3r3rXNKTkqdRXs2TBPyNvjw-t8kSxfnp7n98vEpCj7JEvLlZCWGrXCAkSWIS1RgxEaOCgbBwJSUaZcFqgYj1VhClBolIJ4iE3IzS638-3X2oY-r10wtqp0Y9t1yCVLMSalNMrrPyVmjAFF-T8UnEkVXzMhtztofBuCt2XeeVdrv8mB5tum5xLzXdOjvRxC16vaFr9y6HIEVwPQweiq9LoxLuwdCgacb39xsWPOWrvfHS75AQDKjs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26537929</pqid></control><display><type>article</type><title>High-order and multilayer perceptron initialization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Thimm, G. ; Fiesler, E.</creator><creatorcontrib>Thimm, G. ; Fiesler, E.</creatorcontrib><description>Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.557673</identifier><identifier>PMID: 18255638</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Benchmark testing ; Computer science; control theory; systems ; Connectionism. Neural networks ; Convergence ; Exact sciences and technology ; Feedforward neural networks ; Multi-layer neural network ; Multilayer perceptrons ; Network topology ; Neural networks ; Optimization methods ; Proposals</subject><ispartof>IEEE transactions on neural networks, 1997-03, Vol.8 (2), p.349-359</ispartof><rights>1997 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</citedby><cites>FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/557673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2631550$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thimm, G.</creatorcontrib><creatorcontrib>Fiesler, E.</creatorcontrib><title>High-order and multilayer perceptron initialization</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Benchmark testing</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Feedforward neural networks</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Optimization methods</subject><subject>Proposals</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0L9PAyEUB3BiNLZWB1cH08FoHK7yHgcco2nUmjRx0flCOU4x90u4DvWvl6aXumlCAi98-AKPkHOgMwCq7iTOOJdCsgMyBpVCQqlih3FNU54oRDkiJyF8Ugopp-KYjCBDzgXLxoQt3PtH0vrC-qluimm9rnpX6U0sO-uN7XrfNlPXuN7pyn3r3rXNKTkqdRXs2TBPyNvjw-t8kSxfnp7n98vEpCj7JEvLlZCWGrXCAkSWIS1RgxEaOCgbBwJSUaZcFqgYj1VhClBolIJ4iE3IzS638-3X2oY-r10wtqp0Y9t1yCVLMSalNMrrPyVmjAFF-T8UnEkVXzMhtztofBuCt2XeeVdrv8mB5tum5xLzXdOjvRxC16vaFr9y6HIEVwPQweiq9LoxLuwdCgacb39xsWPOWrvfHS75AQDKjs4</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Thimm, G.</creator><creator>Fiesler, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>High-order and multilayer perceptron initialization</title><author>Thimm, G. ; Fiesler, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Benchmark testing</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Feedforward neural networks</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Optimization methods</topic><topic>Proposals</topic><toplevel>online_resources</toplevel><creatorcontrib>Thimm, G.</creatorcontrib><creatorcontrib>Fiesler, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thimm, G.</au><au>Fiesler, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order and multilayer perceptron initialization</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>8</volume><issue>2</issue><spage>349</spage><epage>359</epage><pages>349-359</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18255638</pmid><doi>10.1109/72.557673</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1997-03, Vol.8 (2), p.349-359
issn 1045-9227
1941-0093
language eng
recordid cdi_pubmed_primary_18255638
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Artificial intelligence
Benchmark testing
Computer science
control theory
systems
Connectionism. Neural networks
Convergence
Exact sciences and technology
Feedforward neural networks
Multi-layer neural network
Multilayer perceptrons
Network topology
Neural networks
Optimization methods
Proposals
title High-order and multilayer perceptron initialization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20and%20multilayer%20perceptron%20initialization&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Thimm,%20G.&rft.date=1997-03-01&rft.volume=8&rft.issue=2&rft.spage=349&rft.epage=359&rft.pages=349-359&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.557673&rft_dat=%3Cproquest_pubme%3E734251940%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-84fb67e0c9b2d168820f2a1c6a1519e19e21206f457d2935212dcd192c991c9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26537929&rft_id=info:pmid/18255638&rft_ieee_id=557673&rfr_iscdi=true