Loading…

A CMOS analog adaptive BAM with on-chip learning and weight refreshing

The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototyp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural networks 1993-05, Vol.4 (3), p.445-455
Main Authors: Linares-Barranco, B., Sanchez-Sinencio, E., Rodriguez-Vazquez, A., Huertas, J.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793
cites cdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793
container_end_page 455
container_issue 3
container_start_page 445
container_title IEEE transactions on neural networks
container_volume 4
creator Linares-Barranco, B.
Sanchez-Sinencio, E.
Rodriguez-Vazquez, A.
Huertas, J.L.
description The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.< >
doi_str_mv 10.1109/72.217187
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18267748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>217187</ieee_id><sourcerecordid>28863407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</originalsourceid><addsrcrecordid>eNqN0c9P2zAUB3ALDQHrOOy6w-TDxMQh5dlx_OxjV40fEqiHwTlynZfWU5p0cTrEf49RI3YbnGzZHz0_vy9jnwVMhQB7gXIqBQqDB-xEWCUyAJt_SHtQRWalxGP2McbfAEIVoI_YsTBSIypzwi5nfH63-MVd65puxV3ltkP4S_zH7I4_hmHNuzbz67DlDbm-DW0ibcUfKazWA--p7imu0-kndli7JtLpuE7Yw-XP-_l1dru4upnPbjOvCjNkSwcSnPeVXmoUhc-FrGuscme0UN56AqhIFVJrlaMmY8k7ab3X2tiqRptP2Pd93W3f_dlRHMpNiJ6axrXU7WKJuZIIVkCSZ_-V0hidK8B3QCmERf02LCxiGnmC53vo-y7GNKRy24eN659KAeVLYCXKch9Ysl_Horvlhqp_ckwogW8jcNG7pu5d60N8dbmB1NrLd7_sWSCi19vxkWc0m6Iq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25977104</pqid></control><display><type>article</type><title>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Linares-Barranco, B. ; Sanchez-Sinencio, E. ; Rodriguez-Vazquez, A. ; Huertas, J.L.</creator><creatorcontrib>Linares-Barranco, B. ; Sanchez-Sinencio, E. ; Rodriguez-Vazquez, A. ; Huertas, J.L.</creatorcontrib><description>The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.&lt; &gt;</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.217187</identifier><identifier>PMID: 18267748</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Associative memory ; Circuits ; CMOS process ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Hebbian theory ; Magnesium compounds ; Network-on-a-chip ; Neural network hardware ; Neural networks ; Prototypes ; System-on-a-chip ; Vehicles</subject><ispartof>IEEE transactions on neural networks, 1993-05, Vol.4 (3), p.445-455</ispartof><rights>1994 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</citedby><cites>FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/217187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3807630$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linares-Barranco, B.</creatorcontrib><creatorcontrib>Sanchez-Sinencio, E.</creatorcontrib><creatorcontrib>Rodriguez-Vazquez, A.</creatorcontrib><creatorcontrib>Huertas, J.L.</creatorcontrib><title>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.&lt; &gt;</description><subject>Applied sciences</subject><subject>Associative memory</subject><subject>Circuits</subject><subject>CMOS process</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hebbian theory</subject><subject>Magnesium compounds</subject><subject>Network-on-a-chip</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Prototypes</subject><subject>System-on-a-chip</subject><subject>Vehicles</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqN0c9P2zAUB3ALDQHrOOy6w-TDxMQh5dlx_OxjV40fEqiHwTlynZfWU5p0cTrEf49RI3YbnGzZHz0_vy9jnwVMhQB7gXIqBQqDB-xEWCUyAJt_SHtQRWalxGP2McbfAEIVoI_YsTBSIypzwi5nfH63-MVd65puxV3ltkP4S_zH7I4_hmHNuzbz67DlDbm-DW0ibcUfKazWA--p7imu0-kndli7JtLpuE7Yw-XP-_l1dru4upnPbjOvCjNkSwcSnPeVXmoUhc-FrGuscme0UN56AqhIFVJrlaMmY8k7ab3X2tiqRptP2Pd93W3f_dlRHMpNiJ6axrXU7WKJuZIIVkCSZ_-V0hidK8B3QCmERf02LCxiGnmC53vo-y7GNKRy24eN659KAeVLYCXKch9Ysl_Horvlhqp_ckwogW8jcNG7pu5d60N8dbmB1NrLd7_sWSCi19vxkWc0m6Iq</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Linares-Barranco, B.</creator><creator>Sanchez-Sinencio, E.</creator><creator>Rodriguez-Vazquez, A.</creator><creator>Huertas, J.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19930501</creationdate><title>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</title><author>Linares-Barranco, B. ; Sanchez-Sinencio, E. ; Rodriguez-Vazquez, A. ; Huertas, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Associative memory</topic><topic>Circuits</topic><topic>CMOS process</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hebbian theory</topic><topic>Magnesium compounds</topic><topic>Network-on-a-chip</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Prototypes</topic><topic>System-on-a-chip</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Linares-Barranco, B.</creatorcontrib><creatorcontrib>Sanchez-Sinencio, E.</creatorcontrib><creatorcontrib>Rodriguez-Vazquez, A.</creatorcontrib><creatorcontrib>Huertas, J.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares-Barranco, B.</au><au>Sanchez-Sinencio, E.</au><au>Rodriguez-Vazquez, A.</au><au>Huertas, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1993-05-01</date><risdate>1993</risdate><volume>4</volume><issue>3</issue><spage>445</spage><epage>455</epage><pages>445-455</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18267748</pmid><doi>10.1109/72.217187</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1993-05, Vol.4 (3), p.445-455
issn 1045-9227
1941-0093
language eng
recordid cdi_pubmed_primary_18267748
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Associative memory
Circuits
CMOS process
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Hebbian theory
Magnesium compounds
Network-on-a-chip
Neural network hardware
Neural networks
Prototypes
System-on-a-chip
Vehicles
title A CMOS analog adaptive BAM with on-chip learning and weight refreshing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CMOS%20analog%20adaptive%20BAM%20with%20on-chip%20learning%20and%20weight%20refreshing&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Linares-Barranco,%20B.&rft.date=1993-05-01&rft.volume=4&rft.issue=3&rft.spage=445&rft.epage=455&rft.pages=445-455&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.217187&rft_dat=%3Cproquest_pubme%3E28863407%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25977104&rft_id=info:pmid/18267748&rft_ieee_id=217187&rfr_iscdi=true