Loading…
A CMOS analog adaptive BAM with on-chip learning and weight refreshing
The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototyp...
Saved in:
Published in: | IEEE transactions on neural networks 1993-05, Vol.4 (3), p.445-455 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793 |
container_end_page | 455 |
container_issue | 3 |
container_start_page | 445 |
container_title | IEEE transactions on neural networks |
container_volume | 4 |
creator | Linares-Barranco, B. Sanchez-Sinencio, E. Rodriguez-Vazquez, A. Huertas, J.L. |
description | The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.< > |
doi_str_mv | 10.1109/72.217187 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18267748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>217187</ieee_id><sourcerecordid>28863407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</originalsourceid><addsrcrecordid>eNqN0c9P2zAUB3ALDQHrOOy6w-TDxMQh5dlx_OxjV40fEqiHwTlynZfWU5p0cTrEf49RI3YbnGzZHz0_vy9jnwVMhQB7gXIqBQqDB-xEWCUyAJt_SHtQRWalxGP2McbfAEIVoI_YsTBSIypzwi5nfH63-MVd65puxV3ltkP4S_zH7I4_hmHNuzbz67DlDbm-DW0ibcUfKazWA--p7imu0-kndli7JtLpuE7Yw-XP-_l1dru4upnPbjOvCjNkSwcSnPeVXmoUhc-FrGuscme0UN56AqhIFVJrlaMmY8k7ab3X2tiqRptP2Pd93W3f_dlRHMpNiJ6axrXU7WKJuZIIVkCSZ_-V0hidK8B3QCmERf02LCxiGnmC53vo-y7GNKRy24eN659KAeVLYCXKch9Ysl_Horvlhqp_ckwogW8jcNG7pu5d60N8dbmB1NrLd7_sWSCi19vxkWc0m6Iq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25977104</pqid></control><display><type>article</type><title>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Linares-Barranco, B. ; Sanchez-Sinencio, E. ; Rodriguez-Vazquez, A. ; Huertas, J.L.</creator><creatorcontrib>Linares-Barranco, B. ; Sanchez-Sinencio, E. ; Rodriguez-Vazquez, A. ; Huertas, J.L.</creatorcontrib><description>The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.< ></description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.217187</identifier><identifier>PMID: 18267748</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Associative memory ; Circuits ; CMOS process ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Hebbian theory ; Magnesium compounds ; Network-on-a-chip ; Neural network hardware ; Neural networks ; Prototypes ; System-on-a-chip ; Vehicles</subject><ispartof>IEEE transactions on neural networks, 1993-05, Vol.4 (3), p.445-455</ispartof><rights>1994 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</citedby><cites>FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/217187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3807630$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linares-Barranco, B.</creatorcontrib><creatorcontrib>Sanchez-Sinencio, E.</creatorcontrib><creatorcontrib>Rodriguez-Vazquez, A.</creatorcontrib><creatorcontrib>Huertas, J.L.</creatorcontrib><title>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.< ></description><subject>Applied sciences</subject><subject>Associative memory</subject><subject>Circuits</subject><subject>CMOS process</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hebbian theory</subject><subject>Magnesium compounds</subject><subject>Network-on-a-chip</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Prototypes</subject><subject>System-on-a-chip</subject><subject>Vehicles</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqN0c9P2zAUB3ALDQHrOOy6w-TDxMQh5dlx_OxjV40fEqiHwTlynZfWU5p0cTrEf49RI3YbnGzZHz0_vy9jnwVMhQB7gXIqBQqDB-xEWCUyAJt_SHtQRWalxGP2McbfAEIVoI_YsTBSIypzwi5nfH63-MVd65puxV3ltkP4S_zH7I4_hmHNuzbz67DlDbm-DW0ibcUfKazWA--p7imu0-kndli7JtLpuE7Yw-XP-_l1dru4upnPbjOvCjNkSwcSnPeVXmoUhc-FrGuscme0UN56AqhIFVJrlaMmY8k7ab3X2tiqRptP2Pd93W3f_dlRHMpNiJ6axrXU7WKJuZIIVkCSZ_-V0hidK8B3QCmERf02LCxiGnmC53vo-y7GNKRy24eN659KAeVLYCXKch9Ysl_Horvlhqp_ckwogW8jcNG7pu5d60N8dbmB1NrLd7_sWSCi19vxkWc0m6Iq</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Linares-Barranco, B.</creator><creator>Sanchez-Sinencio, E.</creator><creator>Rodriguez-Vazquez, A.</creator><creator>Huertas, J.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19930501</creationdate><title>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</title><author>Linares-Barranco, B. ; Sanchez-Sinencio, E. ; Rodriguez-Vazquez, A. ; Huertas, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Associative memory</topic><topic>Circuits</topic><topic>CMOS process</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hebbian theory</topic><topic>Magnesium compounds</topic><topic>Network-on-a-chip</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Prototypes</topic><topic>System-on-a-chip</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Linares-Barranco, B.</creatorcontrib><creatorcontrib>Sanchez-Sinencio, E.</creatorcontrib><creatorcontrib>Rodriguez-Vazquez, A.</creatorcontrib><creatorcontrib>Huertas, J.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares-Barranco, B.</au><au>Sanchez-Sinencio, E.</au><au>Rodriguez-Vazquez, A.</au><au>Huertas, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CMOS analog adaptive BAM with on-chip learning and weight refreshing</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1993-05-01</date><risdate>1993</risdate><volume>4</volume><issue>3</issue><spage>445</spage><epage>455</epage><pages>445-455</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>The transconductance-mode (T-mode) approach is extended to implement analog continuous-time neural network hardware systems to include on-chip Hebbian learning and on-chip analog weight storage capability. The demonstration vehicle used is a 5+5-neuron bidirectional associative memory (BAM) prototype fabricated in a standard 2- mu m double-metal double-polysilicon CMOS process. Mismatches and nonidealities in learning neural hardware are not supposed to be critical if on-chip learning is available, because they will be implicitly compensated. However, mismatches in the learning circuits themselves cannot always be compensated. This mismatch is specially important if the learning circuits use transistors operating in weak inversion. The authors estimate the expected mismatch between learning circuits in the BAM network prototype and evaluate its effect on the learning performance, using theoretical computations and Monte Carlo HSPICE simulations. These theoretical predictions are verified using experimentally measured results on the test vehicle prototype.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18267748</pmid><doi>10.1109/72.217187</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transactions on neural networks, 1993-05, Vol.4 (3), p.445-455 |
issn | 1045-9227 1941-0093 |
language | eng |
recordid | cdi_pubmed_primary_18267748 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Associative memory Circuits CMOS process Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Hebbian theory Magnesium compounds Network-on-a-chip Neural network hardware Neural networks Prototypes System-on-a-chip Vehicles |
title | A CMOS analog adaptive BAM with on-chip learning and weight refreshing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CMOS%20analog%20adaptive%20BAM%20with%20on-chip%20learning%20and%20weight%20refreshing&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Linares-Barranco,%20B.&rft.date=1993-05-01&rft.volume=4&rft.issue=3&rft.spage=445&rft.epage=455&rft.pages=445-455&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.217187&rft_dat=%3Cproquest_pubme%3E28863407%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-ba020accd6b6715c312ff7d3a8614c9ce00de452664376e89eca29cc6689df793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25977104&rft_id=info:pmid/18267748&rft_ieee_id=217187&rfr_iscdi=true |