Loading…
A new feedback neural network with supervised learning
A model is introduced for continuous-time dynamic feedback neural networks with supervised learning ability. Modifications are introduced to conventional models to guarantee precisely that a given desired vector, and its negative, are indeed stored in the network as asymptotically stable equilibrium...
Saved in:
Published in: | IEEE transactions on neural networks 1991-01, Vol.2 (1), p.170-173 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-288496a11087c2d2173aac79c966732a4fbaa6875b1099317cb1ebef44095d2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-288496a11087c2d2173aac79c966732a4fbaa6875b1099317cb1ebef44095d2f3 |
container_end_page | 173 |
container_issue | 1 |
container_start_page | 170 |
container_title | IEEE transactions on neural networks |
container_volume | 2 |
creator | Salam, F.M.A. Bai, S. |
description | A model is introduced for continuous-time dynamic feedback neural networks with supervised learning ability. Modifications are introduced to conventional models to guarantee precisely that a given desired vector, and its negative, are indeed stored in the network as asymptotically stable equilibrium points. The modifications entail that the output signal of a neuron is multiplied by the square of its associated weight to supply the signal to an input of another neuron. A simulation of the complete dynamics is then presented for a prototype one neuron with self-feedback and supervised learning; the simulation illustrates the (supervised) learning capability of the network.< > |
doi_str_mv | 10.1109/72.80309 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18276369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>80309</ieee_id><sourcerecordid>734256041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-288496a11087c2d2173aac79c966732a4fbaa6875b1099317cb1ebef44095d2f3</originalsourceid><addsrcrecordid>eNqF0DtPwzAQB3ALgWh5SKwsKAMClhS_H2NV8ZIqscAcOc4FQtOk2AkV3x5DqrLBdGfdT2f7j9AJwRNCsLlWdKIxw2YHjYnhJMXYsN3YYy5SQ6kaoYMQ3jAmXGC5j0ZEUyWZNGMkp0kD66QEKHLrFvHQe1vH0q1bv0jWVfeahH4F_qMKUCQ1WN9UzcsR2ittHeB4Uw_R8-3N0-w-nT_ePcym89QxbbqUas2NtPGNWjlaUKKYtU4ZZ6RUjFpe5tZKrUQef2EYUS4nkEPJOTaioCU7RJfD3pVv33sIXbasgoO6tg20fcgU41RIzEmUF39KqrlSmtD_oWDccMkivBqg820IHsps5aul9Z8Zwdl37Jmi2U_skZ5tdvb5EopfuMk5gvMNsMHZuvS2cVXYOkE55kZEdjqwCgC20-GOL8k0ju8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25349463</pqid></control><display><type>article</type><title>A new feedback neural network with supervised learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Salam, F.M.A. ; Bai, S.</creator><creatorcontrib>Salam, F.M.A. ; Bai, S.</creatorcontrib><description>A model is introduced for continuous-time dynamic feedback neural networks with supervised learning ability. Modifications are introduced to conventional models to guarantee precisely that a given desired vector, and its negative, are indeed stored in the network as asymptotically stable equilibrium points. The modifications entail that the output signal of a neuron is multiplied by the square of its associated weight to supply the signal to an input of another neuron. A simulation of the complete dynamics is then presented for a prototype one neuron with self-feedback and supervised learning; the simulation illustrates the (supervised) learning capability of the network.< ></description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.80309</identifier><identifier>PMID: 18276369</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; Chaos ; Exact sciences and technology ; Feedforward neural networks ; Function theory, analysis ; Mathematical methods in physics ; Neural networks ; Neurofeedback ; Neurons ; Physics ; Stability ; State feedback ; Supervised learning</subject><ispartof>IEEE transactions on neural networks, 1991-01, Vol.2 (1), p.170-173</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-288496a11087c2d2173aac79c966732a4fbaa6875b1099317cb1ebef44095d2f3</citedby><cites>FETCH-LOGICAL-c389t-288496a11087c2d2173aac79c966732a4fbaa6875b1099317cb1ebef44095d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/80309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5240495$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18276369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salam, F.M.A.</creatorcontrib><creatorcontrib>Bai, S.</creatorcontrib><title>A new feedback neural network with supervised learning</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A model is introduced for continuous-time dynamic feedback neural networks with supervised learning ability. Modifications are introduced to conventional models to guarantee precisely that a given desired vector, and its negative, are indeed stored in the network as asymptotically stable equilibrium points. The modifications entail that the output signal of a neuron is multiplied by the square of its associated weight to supply the signal to an input of another neuron. A simulation of the complete dynamics is then presented for a prototype one neuron with self-feedback and supervised learning; the simulation illustrates the (supervised) learning capability of the network.< ></description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Chaos</subject><subject>Exact sciences and technology</subject><subject>Feedforward neural networks</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Neurons</subject><subject>Physics</subject><subject>Stability</subject><subject>State feedback</subject><subject>Supervised learning</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAQB3ALgWh5SKwsKAMClhS_H2NV8ZIqscAcOc4FQtOk2AkV3x5DqrLBdGfdT2f7j9AJwRNCsLlWdKIxw2YHjYnhJMXYsN3YYy5SQ6kaoYMQ3jAmXGC5j0ZEUyWZNGMkp0kD66QEKHLrFvHQe1vH0q1bv0jWVfeahH4F_qMKUCQ1WN9UzcsR2ittHeB4Uw_R8-3N0-w-nT_ePcym89QxbbqUas2NtPGNWjlaUKKYtU4ZZ6RUjFpe5tZKrUQef2EYUS4nkEPJOTaioCU7RJfD3pVv33sIXbasgoO6tg20fcgU41RIzEmUF39KqrlSmtD_oWDccMkivBqg820IHsps5aul9Z8Zwdl37Jmi2U_skZ5tdvb5EopfuMk5gvMNsMHZuvS2cVXYOkE55kZEdjqwCgC20-GOL8k0ju8</recordid><startdate>199101</startdate><enddate>199101</enddate><creator>Salam, F.M.A.</creator><creator>Bai, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>199101</creationdate><title>A new feedback neural network with supervised learning</title><author>Salam, F.M.A. ; Bai, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-288496a11087c2d2173aac79c966732a4fbaa6875b1099317cb1ebef44095d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Chaos</topic><topic>Exact sciences and technology</topic><topic>Feedforward neural networks</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Neurons</topic><topic>Physics</topic><topic>Stability</topic><topic>State feedback</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Salam, F.M.A.</creatorcontrib><creatorcontrib>Bai, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salam, F.M.A.</au><au>Bai, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new feedback neural network with supervised learning</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1991-01</date><risdate>1991</risdate><volume>2</volume><issue>1</issue><spage>170</spage><epage>173</epage><pages>170-173</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>A model is introduced for continuous-time dynamic feedback neural networks with supervised learning ability. Modifications are introduced to conventional models to guarantee precisely that a given desired vector, and its negative, are indeed stored in the network as asymptotically stable equilibrium points. The modifications entail that the output signal of a neuron is multiplied by the square of its associated weight to supply the signal to an input of another neuron. A simulation of the complete dynamics is then presented for a prototype one neuron with self-feedback and supervised learning; the simulation illustrates the (supervised) learning capability of the network.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18276369</pmid><doi>10.1109/72.80309</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transactions on neural networks, 1991-01, Vol.2 (1), p.170-173 |
issn | 1045-9227 1941-0093 |
language | eng |
recordid | cdi_pubmed_primary_18276369 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Biological system modeling Chaos Exact sciences and technology Feedforward neural networks Function theory, analysis Mathematical methods in physics Neural networks Neurofeedback Neurons Physics Stability State feedback Supervised learning |
title | A new feedback neural network with supervised learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20feedback%20neural%20network%20with%20supervised%20learning&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Salam,%20F.M.A.&rft.date=1991-01&rft.volume=2&rft.issue=1&rft.spage=170&rft.epage=173&rft.pages=170-173&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.80309&rft_dat=%3Cproquest_pubme%3E734256041%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-288496a11087c2d2173aac79c966732a4fbaa6875b1099317cb1ebef44095d2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25349463&rft_id=info:pmid/18276369&rft_ieee_id=80309&rfr_iscdi=true |