Loading…

Characterization of Fifty Putative Inclusion Membrane Proteins Encoded in the Chlamydia trachomatis Genome

Although the Chlamydia trachomatis genome is predicted to encode 50 inclusion membrane proteins, only 18 have been experimentally localized in the inclusion membrane of C. trachomatis-infected cells. Using fusion proteins and anti-fusion protein antibodies, we have systematically evaluated all 50 pu...

Full description

Saved in:
Bibliographic Details
Published in:Infection and Immunity 2008-06, Vol.76 (6), p.2746-2757
Main Authors: Li, Zhongyu, Chen, Chaoqun, Chen, Ding, Wu, Yimou, Zhong, Youmin, Zhong, Guangming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the Chlamydia trachomatis genome is predicted to encode 50 inclusion membrane proteins, only 18 have been experimentally localized in the inclusion membrane of C. trachomatis-infected cells. Using fusion proteins and anti-fusion protein antibodies, we have systematically evaluated all 50 putative inclusion membrane proteins for their localization in the infected cells, distribution patterns, and effects on subsequent chlamydial infection when expressed ectopically, as well as their immunogenicity during chlamydial infection in humans. Twenty-two of the 50 proteins were localized in the inclusion membrane, and 7 were detected inside the inclusions, while the location of the remaining 21 was not defined. Four (CT225, CT228, CT358, and CT440) of the 22 inclusion membrane-localized proteins were visualized in the inclusion membrane of Chlamydia-infected cells for the first time in the current study. The seven intra-inclusion-localized proteins were confirmed to be chlamydial organism proteins in a Western blot assay. Further characterization of the 50 proteins revealed that neither colocalization with host cell endoplasmic reticulum nor inhibition of subsequent chlamydial infection by ectopically expressed proteins correlated with the inclusion membrane localization. Interestingly, antibodies from women with C. trachomatis urogenital infection preferentially recognized proteins localized in the inclusion membrane, and the immunodominant regions were further mapped to the region predicted to be on the cytoplasmic side of the inclusion membrane. These observations suggest that most of the inclusion membrane-localized proteins are both expressed and immunogenic during C. trachomatis infection in humans and that the cytoplasmic exposure may enhance the immunogenicity.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.00010-08