Loading…

Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique

Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we an...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2008-05, Vol.53 (9), p.2425-2438
Main Authors: Julkunen, P, Korhonen, R K, Nissi, M J, Jurvelin, J S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3
cites cdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3
container_end_page 2438
container_issue 9
container_start_page 2425
container_title Physics in medicine & biology
container_volume 53
creator Julkunen, P
Korhonen, R K
Nissi, M J
Jurvelin, J S
description Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.
doi_str_mv 10.1088/0031-9155/53/9/014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18421123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69117456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</originalsourceid><addsrcrecordid>eNp9kUuOFDEMhiMEYnoGLsACZYXEoui4Us8lGvGSBrGBdeRKnCaoKlUkqUWzmkNwAa7GSUipm2ExEitb9uf_t2zGnoF4BaLr9kJIKHqo630t9_1eQPWA7UA2UDR1Ix6y3R1wwS5j_CYEQFdWj9kFdFUJUMod-_WR9Ff0TuPIcxJQJwruByY3ez5bjiE5vY4YuN7SEQ_EhyPX8zQ47_yBT3jwlBkeKM4evSbucm1roTfcZipRQSNN5FMu4XiMLv6-_Yl8mVOuuexsV683x5z-HU55L---r_SEPbI4Rnp6jlfsy9s3n6_fFzef3n24fn1T6Er2qeiMMAhtjwNIaVqCgYayrSyKEpseZK-bEmRrjRFD35EuwRhjy663UA1WoLxiL066S5izbUxqclHTOKKneY0qi0Bb1U0GyxOowxxjIKuWkLcORwVCbY9R293VdndVS9Wr_Jg89Pysvg4TmX8j509k4OUJcPNy170vpBZjM1vcZ_9j_gdZLql6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69117456</pqid></control><display><type>article</type><title>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</title><source>Institute of Physics</source><creator>Julkunen, P ; Korhonen, R K ; Nissi, M J ; Jurvelin, J S</creator><creatorcontrib>Julkunen, P ; Korhonen, R K ; Nissi, M J ; Jurvelin, J S</creatorcontrib><description>Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p &lt; 0.05) as well as the initial permeability (R = 0.70, p &lt; 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p &lt; 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/53/9/014</identifier><identifier>PMID: 18421123</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Animals ; Biomechanical Phenomena ; Cartilage, Articular - metabolism ; Cartilage, Articular - pathology ; Cattle ; Collagen - chemistry ; Elasticity ; Finite Element Analysis ; Humans ; Knee Joint - pathology ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Reproducibility of Results ; Stress, Mechanical ; Time Factors</subject><ispartof>Physics in medicine &amp; biology, 2008-05, Vol.53 (9), p.2425-2438</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</citedby><cites>FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18421123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Julkunen, P</creatorcontrib><creatorcontrib>Korhonen, R K</creatorcontrib><creatorcontrib>Nissi, M J</creatorcontrib><creatorcontrib>Jurvelin, J S</creatorcontrib><title>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p &lt; 0.05) as well as the initial permeability (R = 0.70, p &lt; 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p &lt; 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cartilage, Articular - pathology</subject><subject>Cattle</subject><subject>Collagen - chemistry</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Knee Joint - pathology</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Reproducibility of Results</subject><subject>Stress, Mechanical</subject><subject>Time Factors</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kUuOFDEMhiMEYnoGLsACZYXEoui4Us8lGvGSBrGBdeRKnCaoKlUkqUWzmkNwAa7GSUipm2ExEitb9uf_t2zGnoF4BaLr9kJIKHqo630t9_1eQPWA7UA2UDR1Ix6y3R1wwS5j_CYEQFdWj9kFdFUJUMod-_WR9Ff0TuPIcxJQJwruByY3ez5bjiE5vY4YuN7SEQ_EhyPX8zQ47_yBT3jwlBkeKM4evSbucm1roTfcZipRQSNN5FMu4XiMLv6-_Yl8mVOuuexsV683x5z-HU55L---r_SEPbI4Rnp6jlfsy9s3n6_fFzef3n24fn1T6Er2qeiMMAhtjwNIaVqCgYayrSyKEpseZK-bEmRrjRFD35EuwRhjy663UA1WoLxiL066S5izbUxqclHTOKKneY0qi0Bb1U0GyxOowxxjIKuWkLcORwVCbY9R293VdndVS9Wr_Jg89Pysvg4TmX8j509k4OUJcPNy170vpBZjM1vcZ_9j_gdZLql6</recordid><startdate>20080507</startdate><enddate>20080507</enddate><creator>Julkunen, P</creator><creator>Korhonen, R K</creator><creator>Nissi, M J</creator><creator>Jurvelin, J S</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080507</creationdate><title>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</title><author>Julkunen, P ; Korhonen, R K ; Nissi, M J ; Jurvelin, J S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cartilage, Articular - pathology</topic><topic>Cattle</topic><topic>Collagen - chemistry</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Knee Joint - pathology</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Reproducibility of Results</topic><topic>Stress, Mechanical</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julkunen, P</creatorcontrib><creatorcontrib>Korhonen, R K</creatorcontrib><creatorcontrib>Nissi, M J</creatorcontrib><creatorcontrib>Jurvelin, J S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julkunen, P</au><au>Korhonen, R K</au><au>Nissi, M J</au><au>Jurvelin, J S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2008-05-07</date><risdate>2008</risdate><volume>53</volume><issue>9</issue><spage>2425</spage><epage>2438</epage><pages>2425-2438</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p &lt; 0.05) as well as the initial permeability (R = 0.70, p &lt; 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p &lt; 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>18421123</pmid><doi>10.1088/0031-9155/53/9/014</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2008-05, Vol.53 (9), p.2425-2438
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_18421123
source Institute of Physics
subjects Algorithms
Animals
Biomechanical Phenomena
Cartilage, Articular - metabolism
Cartilage, Articular - pathology
Cattle
Collagen - chemistry
Elasticity
Finite Element Analysis
Humans
Knee Joint - pathology
Magnetic Resonance Imaging - methods
Models, Statistical
Reproducibility of Results
Stress, Mechanical
Time Factors
title Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20of%20articular%20cartilage%20by%20combining%20magnetic%20resonance%20imaging%20and%20finite-element%20analysis%E2%80%94a%20potential%20functional%20imaging%20technique&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Julkunen,%20P&rft.date=2008-05-07&rft.volume=53&rft.issue=9&rft.spage=2425&rft.epage=2438&rft.pages=2425-2438&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/53/9/014&rft_dat=%3Cproquest_pubme%3E69117456%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69117456&rft_id=info:pmid/18421123&rfr_iscdi=true