Loading…
Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique
Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we an...
Saved in:
Published in: | Physics in medicine & biology 2008-05, Vol.53 (9), p.2425-2438 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3 |
container_end_page | 2438 |
container_issue | 9 |
container_start_page | 2425 |
container_title | Physics in medicine & biology |
container_volume | 53 |
creator | Julkunen, P Korhonen, R K Nissi, M J Jurvelin, J S |
description | Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage. |
doi_str_mv | 10.1088/0031-9155/53/9/014 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18421123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69117456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</originalsourceid><addsrcrecordid>eNp9kUuOFDEMhiMEYnoGLsACZYXEoui4Us8lGvGSBrGBdeRKnCaoKlUkqUWzmkNwAa7GSUipm2ExEitb9uf_t2zGnoF4BaLr9kJIKHqo630t9_1eQPWA7UA2UDR1Ix6y3R1wwS5j_CYEQFdWj9kFdFUJUMod-_WR9Ff0TuPIcxJQJwruByY3ez5bjiE5vY4YuN7SEQ_EhyPX8zQ47_yBT3jwlBkeKM4evSbucm1roTfcZipRQSNN5FMu4XiMLv6-_Yl8mVOuuexsV683x5z-HU55L---r_SEPbI4Rnp6jlfsy9s3n6_fFzef3n24fn1T6Er2qeiMMAhtjwNIaVqCgYayrSyKEpseZK-bEmRrjRFD35EuwRhjy663UA1WoLxiL066S5izbUxqclHTOKKneY0qi0Bb1U0GyxOowxxjIKuWkLcORwVCbY9R293VdndVS9Wr_Jg89Pysvg4TmX8j509k4OUJcPNy170vpBZjM1vcZ_9j_gdZLql6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69117456</pqid></control><display><type>article</type><title>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</title><source>Institute of Physics</source><creator>Julkunen, P ; Korhonen, R K ; Nissi, M J ; Jurvelin, J S</creator><creatorcontrib>Julkunen, P ; Korhonen, R K ; Nissi, M J ; Jurvelin, J S</creatorcontrib><description>Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/53/9/014</identifier><identifier>PMID: 18421123</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Animals ; Biomechanical Phenomena ; Cartilage, Articular - metabolism ; Cartilage, Articular - pathology ; Cattle ; Collagen - chemistry ; Elasticity ; Finite Element Analysis ; Humans ; Knee Joint - pathology ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Reproducibility of Results ; Stress, Mechanical ; Time Factors</subject><ispartof>Physics in medicine & biology, 2008-05, Vol.53 (9), p.2425-2438</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</citedby><cites>FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18421123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Julkunen, P</creatorcontrib><creatorcontrib>Korhonen, R K</creatorcontrib><creatorcontrib>Nissi, M J</creatorcontrib><creatorcontrib>Jurvelin, J S</creatorcontrib><title>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</title><title>Physics in medicine & biology</title><addtitle>Phys Med Biol</addtitle><description>Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cartilage, Articular - pathology</subject><subject>Cattle</subject><subject>Collagen - chemistry</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Knee Joint - pathology</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Reproducibility of Results</subject><subject>Stress, Mechanical</subject><subject>Time Factors</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kUuOFDEMhiMEYnoGLsACZYXEoui4Us8lGvGSBrGBdeRKnCaoKlUkqUWzmkNwAa7GSUipm2ExEitb9uf_t2zGnoF4BaLr9kJIKHqo630t9_1eQPWA7UA2UDR1Ix6y3R1wwS5j_CYEQFdWj9kFdFUJUMod-_WR9Ff0TuPIcxJQJwruByY3ez5bjiE5vY4YuN7SEQ_EhyPX8zQ47_yBT3jwlBkeKM4evSbucm1roTfcZipRQSNN5FMu4XiMLv6-_Yl8mVOuuexsV683x5z-HU55L---r_SEPbI4Rnp6jlfsy9s3n6_fFzef3n24fn1T6Er2qeiMMAhtjwNIaVqCgYayrSyKEpseZK-bEmRrjRFD35EuwRhjy663UA1WoLxiL066S5izbUxqclHTOKKneY0qi0Bb1U0GyxOowxxjIKuWkLcORwVCbY9R293VdndVS9Wr_Jg89Pysvg4TmX8j509k4OUJcPNy170vpBZjM1vcZ_9j_gdZLql6</recordid><startdate>20080507</startdate><enddate>20080507</enddate><creator>Julkunen, P</creator><creator>Korhonen, R K</creator><creator>Nissi, M J</creator><creator>Jurvelin, J S</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080507</creationdate><title>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</title><author>Julkunen, P ; Korhonen, R K ; Nissi, M J ; Jurvelin, J S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cartilage, Articular - pathology</topic><topic>Cattle</topic><topic>Collagen - chemistry</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Knee Joint - pathology</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Reproducibility of Results</topic><topic>Stress, Mechanical</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julkunen, P</creatorcontrib><creatorcontrib>Korhonen, R K</creatorcontrib><creatorcontrib>Nissi, M J</creatorcontrib><creatorcontrib>Jurvelin, J S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julkunen, P</au><au>Korhonen, R K</au><au>Nissi, M J</au><au>Jurvelin, J S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique</atitle><jtitle>Physics in medicine & biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2008-05-07</date><risdate>2008</risdate><volume>53</volume><issue>9</issue><spage>2425</spage><epage>2438</epage><pages>2425-2438</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T(1) and T(2) relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T(2) profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T(2) maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T(1). In bovine cartilage, T(2) correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T(2). Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T(2) due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T(1) reflects PG-specific mechanical properties of cartilage. High T(2) is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T(2) can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>18421123</pmid><doi>10.1088/0031-9155/53/9/014</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2008-05, Vol.53 (9), p.2425-2438 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_pubmed_primary_18421123 |
source | Institute of Physics |
subjects | Algorithms Animals Biomechanical Phenomena Cartilage, Articular - metabolism Cartilage, Articular - pathology Cattle Collagen - chemistry Elasticity Finite Element Analysis Humans Knee Joint - pathology Magnetic Resonance Imaging - methods Models, Statistical Reproducibility of Results Stress, Mechanical Time Factors |
title | Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20of%20articular%20cartilage%20by%20combining%20magnetic%20resonance%20imaging%20and%20finite-element%20analysis%E2%80%94a%20potential%20functional%20imaging%20technique&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Julkunen,%20P&rft.date=2008-05-07&rft.volume=53&rft.issue=9&rft.spage=2425&rft.epage=2438&rft.pages=2425-2438&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/53/9/014&rft_dat=%3Cproquest_pubme%3E69117456%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-8d0da179ab133d7e1beb274fa02a69139c62137fdd0b98ec21dddf289f14bf0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69117456&rft_id=info:pmid/18421123&rfr_iscdi=true |