Loading…

Soil CO2 Emissions from Northern Andean Paramo Ecosystems : Effects of Fallow Agriculture

The effects of fallow agriculture on soil organic matter (SOM) dynamics and CO2 emissions were assessed in the tropical Andean páramo ecosystem. Possible changes during the cultivation-fallow cycle were monitored in four areas of the Quebrada Piñuelas valley (Venezuela). Uncultivated soils and plots...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2008-03, Vol.42 (5), p.1408-1415
Main Authors: CABANEIRO, Ana, FERNANDEZ, Irene, PEREZ-VENTURA, Luis, CARBALLAS, Tarsy
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of fallow agriculture on soil organic matter (SOM) dynamics and CO2 emissions were assessed in the tropical Andean páramo ecosystem. Possible changes during the cultivation-fallow cycle were monitored in four areas of the Quebrada Piñuelas valley (Venezuela). Uncultivated soils and plots at different stages of a complete cultivation--fallow cycle were incubated, and SOM mineralization kinetics was determined. Soils exhibited a low SOM mineralization activity, total CO2 evolved never reaching 3% of soil carbon, pointing to a stabilized SOM. Potential soil CO2 effluxes differed significantly according to their plot aspect: northeast (NE)-aspect soils presented higher CO2 effluxes than southwest (SW)-aspect soils. Soil CO2 emissions decreased after ploughing as compared to virgin páramo; low CO2 effluxes were still observed during cropping periods, increasing progressively to reach the highest values after 4-5 y of fallow. In all cases, experimental C mineralization data was fitted to a double exponential kinetic model. High soil labile C pool variability was observed, and two different trends were identified: NE-oriented soils showed more labile C and a wider range of values than SW-facing soils. Labile C positively correlated with CO2 effluxes and negatively with its instantaneous mineralization rate. The instantaneous mineralization rate of the recalcitrant C pool positively correlated with %C evolved as CO2 and negatively with soil C and Al2O3 contents, suggesting the importance of aluminum on SOM stability. The CO2 effluxes from these ecosystems, as well as the proportion of soil C released to the atmosphere, seem to depend not only on the size of the labile C pool but also on the accessibility of the more stabilized SOM. Therefore, fallow agriculture produces moderate changes in SOM quality and temporarily alters the CO2 emission capacity of these soils.
ISSN:0013-936X
1520-5851
DOI:10.1021/es071392d