Loading…

17Alpha-estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells

A pharmacological dose (2.5-10 microM) of 17alpha-estradiol (17alpha-E(2)) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events includi...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology and applied pharmacology 2008-09, Vol.231 (3), p.401
Main Authors: Jun, Do Youn, Park, Hae Sun, Kim, Jun Seok, Kim, Jong Sik, Park, Wan, Song, Bang Ho, Kim, Hee-Sook, Taub, Dennis, Kim, Young Ho
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A pharmacological dose (2.5-10 microM) of 17alpha-estradiol (17alpha-E(2)) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17alpha-E(2) was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G(2)/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56 phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17alpha-E(2)-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G(2)/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17alpha-E(2)-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G(1)/S boundary, 17alpha-E(2) failed to induce the G(2)/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17alpha-E(2) toward Jurkat T cells is attributable to apoptosis mainly induced in G(2)/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.
ISSN:1096-0333
DOI:10.1016/j.taap.2008.05.023