Loading…
The Brucella abortus S19 DeltavjbR live vaccine candidate is safer than S19 and confers protection against wild-type challenge in BALB/c mice when delivered in a sustained-release vehicle
Brucellosis is an important zoonotic disease of nearly worldwide distribution. Despite the availability of live vaccine strains for bovine (S19, RB51) and small ruminants (Rev-1), these vaccines have several drawbacks, including residual virulence for animals and humans. Safe and efficacious immuniz...
Saved in:
Published in: | Infection and immunity 2009-02, Vol.77 (2), p.877 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brucellosis is an important zoonotic disease of nearly worldwide distribution. Despite the availability of live vaccine strains for bovine (S19, RB51) and small ruminants (Rev-1), these vaccines have several drawbacks, including residual virulence for animals and humans. Safe and efficacious immunization systems are therefore needed to overcome these disadvantages. A vjbR knockout was generated in the S19 vaccine and investigated for its potential use as an improved vaccine candidate. Vaccination with a sustained-release vehicle to enhance vaccination efficacy was evaluated utilizing the live S19 DeltavjbR::Kan in encapsulated alginate microspheres containing a nonimmunogenic eggshell precursor protein of the parasite Fasciola hepatica (vitelline protein B). BALB/c mice were immunized intraperitoneally with either encapsulated or nonencapsulated S19 DeltavjbR::Kan at a dose of 1 x 10(5) CFU per animal to evaluate immunogenicity, safety, and protective efficacy. Humoral responses postvaccination indicate that the vaccine candidate was able to elicit an anti-Brucella-specific immunoglobulin G response even when the vaccine was administered in an encapsulated format. The safety was revealed by the absence of splenomegaly in mice that were inoculated with the mutant. Finally, a single dose with the encapsulated mutant conferred higher levels of protection compared to the nonencapsulated vaccine. These results suggest that S19 DeltavjbR::Kan is safer than S19, induces protection in mice, and should be considered as a vaccine candidate when administered in a sustained-release manner. |
---|---|
ISSN: | 1098-5522 |
DOI: | 10.1128/IAI.01017-08 |