Loading…
A novel algorithm for unsupervised prosodic language model adaptation
Symbolic representations of prosodic events have been shown to be useful for spoken language applications such as speech recognition. However, a major drawback with categorical prosody models is their lack of scalability due to the difficulty in annotating large corpora with prosodic tags for traini...
Saved in:
Published in: | 2008 IEEE International Conference on Acoustics, Speech and Signal Processing Speech and Signal Processing, 2008-01 (4518576), p.4181-4184 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Symbolic representations of prosodic events have been shown to be useful for spoken language applications such as speech recognition. However, a major drawback with categorical prosody models is their lack of scalability due to the difficulty in annotating large corpora with prosodic tags for training. In this paper, we present a novel, unsupervised adaptation technique for bootstrapping categorical prosodic language models (PLMs) from a small, annotated training set. Our experiments indicate that the adaptation algorithm significantly improves the quality and coverage of the PLM. On a test set derived from the Boston University Radio News corpus, the adapted PLM gave a relative improvement of 13.8% over the seed PLM on the binary pitch accent detection task, while reducing the OOV rate by 16.5% absolute. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2008.4518576 |