Loading…

Inherent noise can facilitate coherence in collective swarm motion

Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelle...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2009-04, Vol.106 (14), p.5464-5469
Main Authors: Yates, Christian A, Erban, Radek, Escudero, Carlos, Couzin, Iain D, Buhl, Jerome, Kevrekidis, Ioannis G, Maini, Philip K, Sumpter, David J.T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c602t-c36ce3e3c3fc186faa0190f25da59d4222fcbd980cc4208887cad43179a76a6e3
cites cdi_FETCH-LOGICAL-c602t-c36ce3e3c3fc186faa0190f25da59d4222fcbd980cc4208887cad43179a76a6e3
container_end_page 5469
container_issue 14
container_start_page 5464
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Yates, Christian A
Erban, Radek
Escudero, Carlos
Couzin, Iain D
Buhl, Jerome
Kevrekidis, Ioannis G
Maini, Philip K
Sumpter, David J.T
description Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker-Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker-Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker-Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker-Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data.
doi_str_mv 10.1073/pnas.0811195106
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19336580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1678321971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-c36ce3e3c3fc186faa0190f25da59d4222fcbd980cc4208887cad43179a76a6e3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS1ERbeFMzeIOHEg7YztOPYFqZSPVqrUA5Sr5TrO1lU2Xmynpf89Drti6aUnezS_92ZGj5DXCEcILTtejyYdgURE1SCIZ2SBoLAWXMFzsgCgbS055fvkIKVbAFCNhBdkHxVjonwX5NP5eOOiG3M1Bp9cZc1Y9cb6wWeTSxn-dq2r_FiKYXA2-ztXpXsTV9UqZB_Gl2SvN0Nyr7bvIbn6-uXH6Vl9cfnt_PTkorYCaK4tE9YxxyzrLUrRGwOooKdNZxrVcUppb687JcFaTkFK2VrTcYatMq0wwrFD8mHjm-7derrW6-hXJj7oYLz-7H-e6BCXepo0UoVUFvzjBi_synW23BjN8Ej1uDP6G70Md5oK0UI7G7zbGsTwa3Ip69swxbGcqCkgY7RVUKDjDWRjSCm6_t8ABD1HpOeI9C6ionjz_147fptJAd5ugVm5sxMauW644IV4_zSh-2kYsvudd2a9Cdoso0_66vu8PqDAlnJgfwDZd69T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201332790</pqid></control><display><type>article</type><title>Inherent noise can facilitate coherence in collective swarm motion</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Yates, Christian A ; Erban, Radek ; Escudero, Carlos ; Couzin, Iain D ; Buhl, Jerome ; Kevrekidis, Ioannis G ; Maini, Philip K ; Sumpter, David J.T</creator><creatorcontrib>Yates, Christian A ; Erban, Radek ; Escudero, Carlos ; Couzin, Iain D ; Buhl, Jerome ; Kevrekidis, Ioannis G ; Maini, Philip K ; Sumpter, David J.T</creatorcontrib><description>Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker-Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker-Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker-Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker-Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0811195106</identifier><identifier>PMID: 19336580</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal behavior ; Animals ; Biogeography ; Biological Sciences ; coarse-graining ; collective behavior ; Computer Simulation ; density-dependent switching ; Dispersal ; Entomology ; Flight, Animal ; Grasshoppers ; Insects ; locusts ; MATEMATIK ; MATHEMATICS ; Models, Biological ; Movement ; Noise ; Physical Sciences ; Starlings ; swarming</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (14), p.5464-5469</ispartof><rights>Copyright National Academy of Sciences Apr 7, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-c36ce3e3c3fc186faa0190f25da59d4222fcbd980cc4208887cad43179a76a6e3</citedby><cites>FETCH-LOGICAL-c602t-c36ce3e3c3fc186faa0190f25da59d4222fcbd980cc4208887cad43179a76a6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667078/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667078/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19336580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129128$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yates, Christian A</creatorcontrib><creatorcontrib>Erban, Radek</creatorcontrib><creatorcontrib>Escudero, Carlos</creatorcontrib><creatorcontrib>Couzin, Iain D</creatorcontrib><creatorcontrib>Buhl, Jerome</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><creatorcontrib>Maini, Philip K</creatorcontrib><creatorcontrib>Sumpter, David J.T</creatorcontrib><title>Inherent noise can facilitate coherence in collective swarm motion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker-Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker-Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker-Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker-Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Biogeography</subject><subject>Biological Sciences</subject><subject>coarse-graining</subject><subject>collective behavior</subject><subject>Computer Simulation</subject><subject>density-dependent switching</subject><subject>Dispersal</subject><subject>Entomology</subject><subject>Flight, Animal</subject><subject>Grasshoppers</subject><subject>Insects</subject><subject>locusts</subject><subject>MATEMATIK</subject><subject>MATHEMATICS</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>Noise</subject><subject>Physical Sciences</subject><subject>Starlings</subject><subject>swarming</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS1ERbeFMzeIOHEg7YztOPYFqZSPVqrUA5Sr5TrO1lU2Xmynpf89Drti6aUnezS_92ZGj5DXCEcILTtejyYdgURE1SCIZ2SBoLAWXMFzsgCgbS055fvkIKVbAFCNhBdkHxVjonwX5NP5eOOiG3M1Bp9cZc1Y9cb6wWeTSxn-dq2r_FiKYXA2-ztXpXsTV9UqZB_Gl2SvN0Nyr7bvIbn6-uXH6Vl9cfnt_PTkorYCaK4tE9YxxyzrLUrRGwOooKdNZxrVcUppb687JcFaTkFK2VrTcYatMq0wwrFD8mHjm-7derrW6-hXJj7oYLz-7H-e6BCXepo0UoVUFvzjBi_synW23BjN8Ej1uDP6G70Md5oK0UI7G7zbGsTwa3Ip69swxbGcqCkgY7RVUKDjDWRjSCm6_t8ABD1HpOeI9C6ionjz_147fptJAd5ugVm5sxMauW644IV4_zSh-2kYsvudd2a9Cdoso0_66vu8PqDAlnJgfwDZd69T</recordid><startdate>20090407</startdate><enddate>20090407</enddate><creator>Yates, Christian A</creator><creator>Erban, Radek</creator><creator>Escudero, Carlos</creator><creator>Couzin, Iain D</creator><creator>Buhl, Jerome</creator><creator>Kevrekidis, Ioannis G</creator><creator>Maini, Philip K</creator><creator>Sumpter, David J.T</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20090407</creationdate><title>Inherent noise can facilitate coherence in collective swarm motion</title><author>Yates, Christian A ; Erban, Radek ; Escudero, Carlos ; Couzin, Iain D ; Buhl, Jerome ; Kevrekidis, Ioannis G ; Maini, Philip K ; Sumpter, David J.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-c36ce3e3c3fc186faa0190f25da59d4222fcbd980cc4208887cad43179a76a6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Biogeography</topic><topic>Biological Sciences</topic><topic>coarse-graining</topic><topic>collective behavior</topic><topic>Computer Simulation</topic><topic>density-dependent switching</topic><topic>Dispersal</topic><topic>Entomology</topic><topic>Flight, Animal</topic><topic>Grasshoppers</topic><topic>Insects</topic><topic>locusts</topic><topic>MATEMATIK</topic><topic>MATHEMATICS</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>Noise</topic><topic>Physical Sciences</topic><topic>Starlings</topic><topic>swarming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yates, Christian A</creatorcontrib><creatorcontrib>Erban, Radek</creatorcontrib><creatorcontrib>Escudero, Carlos</creatorcontrib><creatorcontrib>Couzin, Iain D</creatorcontrib><creatorcontrib>Buhl, Jerome</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><creatorcontrib>Maini, Philip K</creatorcontrib><creatorcontrib>Sumpter, David J.T</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yates, Christian A</au><au>Erban, Radek</au><au>Escudero, Carlos</au><au>Couzin, Iain D</au><au>Buhl, Jerome</au><au>Kevrekidis, Ioannis G</au><au>Maini, Philip K</au><au>Sumpter, David J.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inherent noise can facilitate coherence in collective swarm motion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-04-07</date><risdate>2009</risdate><volume>106</volume><issue>14</issue><spage>5464</spage><epage>5469</epage><pages>5464-5469</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker-Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker-Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker-Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker-Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19336580</pmid><doi>10.1073/pnas.0811195106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (14), p.5464-5469
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmed_primary_19336580
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animal behavior
Animals
Biogeography
Biological Sciences
coarse-graining
collective behavior
Computer Simulation
density-dependent switching
Dispersal
Entomology
Flight, Animal
Grasshoppers
Insects
locusts
MATEMATIK
MATHEMATICS
Models, Biological
Movement
Noise
Physical Sciences
Starlings
swarming
title Inherent noise can facilitate coherence in collective swarm motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inherent%20noise%20can%20facilitate%20coherence%20in%20collective%20swarm%20motion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yates,%20Christian%20A&rft.date=2009-04-07&rft.volume=106&rft.issue=14&rft.spage=5464&rft.epage=5469&rft.pages=5464-5469&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0811195106&rft_dat=%3Cproquest_pubme%3E1678321971%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c602t-c36ce3e3c3fc186faa0190f25da59d4222fcbd980cc4208887cad43179a76a6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201332790&rft_id=info:pmid/19336580&rfr_iscdi=true