Loading…

TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms

The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLC...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2009-07, Vol.106 (27), p.11330-11335
Main Authors: Imamachi, Noritaka, Park, Goon Ho, Lee, Hyosang, Anderson, David J, Simon, Melvin I, Basbaum, Allan I, Han, Sang-Kyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3
cites cdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3
container_end_page 11335
container_issue 27
container_start_page 11330
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Imamachi, Noritaka
Park, Goon Ho
Lee, Hyosang
Anderson, David J
Simon, Melvin I
Basbaum, Allan I
Han, Sang-Kyou
description The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways.
doi_str_mv 10.1073/pnas.0905605106
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19564617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40483794</jstor_id><sourcerecordid>40483794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzAmIOCBxSDuTOLZzQUIVX1IlELRcLScZ73qVxKmdrMp_j5eNusClJ9t6v3ma55ckzxHOEERxPg46nEEFJYcSgT9IVggVZpxV8DBZAeQikyxnJ8mTELYAUJUSHicnWJWccRSrZH31_dtPzOh29BSCHdbp6G2v_a9UG0OehimkaxrI64nSmjZ6Z53XXRrp0Q2BQjq5ODJ7O7nIhXRnddrP3WTHjtKemo0ebOjD0-SR0V2gZ8t5mlx__HB18Tm7_Prpy8X7y6zhrJwybSRIpgumCdsc6_igXGPTaGwbQ01RV7wWiAKZbHPNkRmNaFpRoTHxUpwm7w6-41z31DYxQFxXLaGU01b9qwx2o9Zup3IBUpQYDd4sBt7dzBQm1dvQUNfpgdwcFBeMC4HlvWAOErgUMoKv_wO3bvZD_IXIYMHL_I_b-QFqvAvBk7lbGUHtq1b7qtWx6jjx8u-kR37pNgJvF2A_ebTjMatCLApQZu66iW6nyKb3sBF5cUC2YXL-jmHAZCEqFvVXB91op_Ta26Cuf-wDAvKyQJYXvwH6odM_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201365215</pqid></control><display><type>article</type><title>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Imamachi, Noritaka ; Park, Goon Ho ; Lee, Hyosang ; Anderson, David J ; Simon, Melvin I ; Basbaum, Allan I ; Han, Sang-Kyou</creator><creatorcontrib>Imamachi, Noritaka ; Park, Goon Ho ; Lee, Hyosang ; Anderson, David J ; Simon, Melvin I ; Basbaum, Allan I ; Han, Sang-Kyou</creatorcontrib><description>The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0905605106</identifier><identifier>PMID: 19564617</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Behavior, Animal - drug effects ; Behavioral neuroscience ; Biological Sciences ; Endothelin-1 - administration &amp; dosage ; Endothelin-1 - pharmacology ; Genotypes ; Histamines ; Injections ; Mental stimulation ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Molecules ; Mutation - genetics ; Neurons ; Neurons, Afferent - drug effects ; Neurons, Afferent - enzymology ; Neurons, Afferent - metabolism ; Nociceptors ; Nociceptors - metabolism ; Pain ; Pain - metabolism ; Phospholipase C beta - deficiency ; Phospholipase C beta - metabolism ; Physical Stimulation ; Posterior Horn Cells - drug effects ; Posterior Horn Cells - metabolism ; Posterior Horn Cells - pathology ; Proto-Oncogene Proteins c-fos - metabolism ; Pruritus - metabolism ; Receptors ; Rodents ; Serotonin - administration &amp; dosage ; Serotonin - analogs &amp; derivatives ; Serotonin - pharmacology ; Serotonin receptors ; Signal transduction ; Temperature ; TRPV Cation Channels - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (27), p.11330-11335</ispartof><rights>Copyright National Academy of Sciences Jul 7, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</citedby><cites>FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40483794$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40483794$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19564617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imamachi, Noritaka</creatorcontrib><creatorcontrib>Park, Goon Ho</creatorcontrib><creatorcontrib>Lee, Hyosang</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Basbaum, Allan I</creatorcontrib><creatorcontrib>Han, Sang-Kyou</creatorcontrib><title>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways.</description><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Endothelin-1 - administration &amp; dosage</subject><subject>Endothelin-1 - pharmacology</subject><subject>Genotypes</subject><subject>Histamines</subject><subject>Injections</subject><subject>Mental stimulation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>Mutation - genetics</subject><subject>Neurons</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurons, Afferent - enzymology</subject><subject>Neurons, Afferent - metabolism</subject><subject>Nociceptors</subject><subject>Nociceptors - metabolism</subject><subject>Pain</subject><subject>Pain - metabolism</subject><subject>Phospholipase C beta - deficiency</subject><subject>Phospholipase C beta - metabolism</subject><subject>Physical Stimulation</subject><subject>Posterior Horn Cells - drug effects</subject><subject>Posterior Horn Cells - metabolism</subject><subject>Posterior Horn Cells - pathology</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Pruritus - metabolism</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Serotonin - administration &amp; dosage</subject><subject>Serotonin - analogs &amp; derivatives</subject><subject>Serotonin - pharmacology</subject><subject>Serotonin receptors</subject><subject>Signal transduction</subject><subject>Temperature</subject><subject>TRPV Cation Channels - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxSMEokvhzAmIOCBxSDuTOLZzQUIVX1IlELRcLScZ73qVxKmdrMp_j5eNusClJ9t6v3ma55ckzxHOEERxPg46nEEFJYcSgT9IVggVZpxV8DBZAeQikyxnJ8mTELYAUJUSHicnWJWccRSrZH31_dtPzOh29BSCHdbp6G2v_a9UG0OehimkaxrI64nSmjZ6Z53XXRrp0Q2BQjq5ODJ7O7nIhXRnddrP3WTHjtKemo0ebOjD0-SR0V2gZ8t5mlx__HB18Tm7_Prpy8X7y6zhrJwybSRIpgumCdsc6_igXGPTaGwbQ01RV7wWiAKZbHPNkRmNaFpRoTHxUpwm7w6-41z31DYxQFxXLaGU01b9qwx2o9Zup3IBUpQYDd4sBt7dzBQm1dvQUNfpgdwcFBeMC4HlvWAOErgUMoKv_wO3bvZD_IXIYMHL_I_b-QFqvAvBk7lbGUHtq1b7qtWx6jjx8u-kR37pNgJvF2A_ebTjMatCLApQZu66iW6nyKb3sBF5cUC2YXL-jmHAZCEqFvVXB91op_Ta26Cuf-wDAvKyQJYXvwH6odM_</recordid><startdate>20090707</startdate><enddate>20090707</enddate><creator>Imamachi, Noritaka</creator><creator>Park, Goon Ho</creator><creator>Lee, Hyosang</creator><creator>Anderson, David J</creator><creator>Simon, Melvin I</creator><creator>Basbaum, Allan I</creator><creator>Han, Sang-Kyou</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090707</creationdate><title>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</title><author>Imamachi, Noritaka ; Park, Goon Ho ; Lee, Hyosang ; Anderson, David J ; Simon, Melvin I ; Basbaum, Allan I ; Han, Sang-Kyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Endothelin-1 - administration &amp; dosage</topic><topic>Endothelin-1 - pharmacology</topic><topic>Genotypes</topic><topic>Histamines</topic><topic>Injections</topic><topic>Mental stimulation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>Mutation - genetics</topic><topic>Neurons</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurons, Afferent - enzymology</topic><topic>Neurons, Afferent - metabolism</topic><topic>Nociceptors</topic><topic>Nociceptors - metabolism</topic><topic>Pain</topic><topic>Pain - metabolism</topic><topic>Phospholipase C beta - deficiency</topic><topic>Phospholipase C beta - metabolism</topic><topic>Physical Stimulation</topic><topic>Posterior Horn Cells - drug effects</topic><topic>Posterior Horn Cells - metabolism</topic><topic>Posterior Horn Cells - pathology</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Pruritus - metabolism</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Serotonin - administration &amp; dosage</topic><topic>Serotonin - analogs &amp; derivatives</topic><topic>Serotonin - pharmacology</topic><topic>Serotonin receptors</topic><topic>Signal transduction</topic><topic>Temperature</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamachi, Noritaka</creatorcontrib><creatorcontrib>Park, Goon Ho</creatorcontrib><creatorcontrib>Lee, Hyosang</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Basbaum, Allan I</creatorcontrib><creatorcontrib>Han, Sang-Kyou</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamachi, Noritaka</au><au>Park, Goon Ho</au><au>Lee, Hyosang</au><au>Anderson, David J</au><au>Simon, Melvin I</au><au>Basbaum, Allan I</au><au>Han, Sang-Kyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-07-07</date><risdate>2009</risdate><volume>106</volume><issue>27</issue><spage>11330</spage><epage>11335</epage><pages>11330-11335</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19564617</pmid><doi>10.1073/pnas.0905605106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (27), p.11330-11335
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_19564617
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Behavior, Animal - drug effects
Behavioral neuroscience
Biological Sciences
Endothelin-1 - administration & dosage
Endothelin-1 - pharmacology
Genotypes
Histamines
Injections
Mental stimulation
Mice
Mice, Inbred C57BL
Models, Biological
Molecules
Mutation - genetics
Neurons
Neurons, Afferent - drug effects
Neurons, Afferent - enzymology
Neurons, Afferent - metabolism
Nociceptors
Nociceptors - metabolism
Pain
Pain - metabolism
Phospholipase C beta - deficiency
Phospholipase C beta - metabolism
Physical Stimulation
Posterior Horn Cells - drug effects
Posterior Horn Cells - metabolism
Posterior Horn Cells - pathology
Proto-Oncogene Proteins c-fos - metabolism
Pruritus - metabolism
Receptors
Rodents
Serotonin - administration & dosage
Serotonin - analogs & derivatives
Serotonin - pharmacology
Serotonin receptors
Signal transduction
Temperature
TRPV Cation Channels - metabolism
title TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRPV1-expressing%20primary%20afferents%20generate%20behavioral%20responses%20to%20pruritogens%20via%20multiple%20mechanisms&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Imamachi,%20Noritaka&rft.date=2009-07-07&rft.volume=106&rft.issue=27&rft.spage=11330&rft.epage=11335&rft.pages=11330-11335&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0905605106&rft_dat=%3Cjstor_pubme%3E40483794%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201365215&rft_id=info:pmid/19564617&rft_jstor_id=40483794&rfr_iscdi=true