Loading…
TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms
The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLC...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2009-07, Vol.106 (27), p.11330-11335 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3 |
container_end_page | 11335 |
container_issue | 27 |
container_start_page | 11330 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Imamachi, Noritaka Park, Goon Ho Lee, Hyosang Anderson, David J Simon, Melvin I Basbaum, Allan I Han, Sang-Kyou |
description | The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways. |
doi_str_mv | 10.1073/pnas.0905605106 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19564617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40483794</jstor_id><sourcerecordid>40483794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzAmIOCBxSDuTOLZzQUIVX1IlELRcLScZ73qVxKmdrMp_j5eNusClJ9t6v3ma55ckzxHOEERxPg46nEEFJYcSgT9IVggVZpxV8DBZAeQikyxnJ8mTELYAUJUSHicnWJWccRSrZH31_dtPzOh29BSCHdbp6G2v_a9UG0OehimkaxrI64nSmjZ6Z53XXRrp0Q2BQjq5ODJ7O7nIhXRnddrP3WTHjtKemo0ebOjD0-SR0V2gZ8t5mlx__HB18Tm7_Prpy8X7y6zhrJwybSRIpgumCdsc6_igXGPTaGwbQ01RV7wWiAKZbHPNkRmNaFpRoTHxUpwm7w6-41z31DYxQFxXLaGU01b9qwx2o9Zup3IBUpQYDd4sBt7dzBQm1dvQUNfpgdwcFBeMC4HlvWAOErgUMoKv_wO3bvZD_IXIYMHL_I_b-QFqvAvBk7lbGUHtq1b7qtWx6jjx8u-kR37pNgJvF2A_ebTjMatCLApQZu66iW6nyKb3sBF5cUC2YXL-jmHAZCEqFvVXB91op_Ta26Cuf-wDAvKyQJYXvwH6odM_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201365215</pqid></control><display><type>article</type><title>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Imamachi, Noritaka ; Park, Goon Ho ; Lee, Hyosang ; Anderson, David J ; Simon, Melvin I ; Basbaum, Allan I ; Han, Sang-Kyou</creator><creatorcontrib>Imamachi, Noritaka ; Park, Goon Ho ; Lee, Hyosang ; Anderson, David J ; Simon, Melvin I ; Basbaum, Allan I ; Han, Sang-Kyou</creatorcontrib><description>The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0905605106</identifier><identifier>PMID: 19564617</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Behavior, Animal - drug effects ; Behavioral neuroscience ; Biological Sciences ; Endothelin-1 - administration & dosage ; Endothelin-1 - pharmacology ; Genotypes ; Histamines ; Injections ; Mental stimulation ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Molecules ; Mutation - genetics ; Neurons ; Neurons, Afferent - drug effects ; Neurons, Afferent - enzymology ; Neurons, Afferent - metabolism ; Nociceptors ; Nociceptors - metabolism ; Pain ; Pain - metabolism ; Phospholipase C beta - deficiency ; Phospholipase C beta - metabolism ; Physical Stimulation ; Posterior Horn Cells - drug effects ; Posterior Horn Cells - metabolism ; Posterior Horn Cells - pathology ; Proto-Oncogene Proteins c-fos - metabolism ; Pruritus - metabolism ; Receptors ; Rodents ; Serotonin - administration & dosage ; Serotonin - analogs & derivatives ; Serotonin - pharmacology ; Serotonin receptors ; Signal transduction ; Temperature ; TRPV Cation Channels - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (27), p.11330-11335</ispartof><rights>Copyright National Academy of Sciences Jul 7, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</citedby><cites>FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40483794$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40483794$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19564617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imamachi, Noritaka</creatorcontrib><creatorcontrib>Park, Goon Ho</creatorcontrib><creatorcontrib>Lee, Hyosang</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Basbaum, Allan I</creatorcontrib><creatorcontrib>Han, Sang-Kyou</creatorcontrib><title>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways.</description><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Endothelin-1 - administration & dosage</subject><subject>Endothelin-1 - pharmacology</subject><subject>Genotypes</subject><subject>Histamines</subject><subject>Injections</subject><subject>Mental stimulation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>Mutation - genetics</subject><subject>Neurons</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurons, Afferent - enzymology</subject><subject>Neurons, Afferent - metabolism</subject><subject>Nociceptors</subject><subject>Nociceptors - metabolism</subject><subject>Pain</subject><subject>Pain - metabolism</subject><subject>Phospholipase C beta - deficiency</subject><subject>Phospholipase C beta - metabolism</subject><subject>Physical Stimulation</subject><subject>Posterior Horn Cells - drug effects</subject><subject>Posterior Horn Cells - metabolism</subject><subject>Posterior Horn Cells - pathology</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Pruritus - metabolism</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Serotonin - administration & dosage</subject><subject>Serotonin - analogs & derivatives</subject><subject>Serotonin - pharmacology</subject><subject>Serotonin receptors</subject><subject>Signal transduction</subject><subject>Temperature</subject><subject>TRPV Cation Channels - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxSMEokvhzAmIOCBxSDuTOLZzQUIVX1IlELRcLScZ73qVxKmdrMp_j5eNusClJ9t6v3ma55ckzxHOEERxPg46nEEFJYcSgT9IVggVZpxV8DBZAeQikyxnJ8mTELYAUJUSHicnWJWccRSrZH31_dtPzOh29BSCHdbp6G2v_a9UG0OehimkaxrI64nSmjZ6Z53XXRrp0Q2BQjq5ODJ7O7nIhXRnddrP3WTHjtKemo0ebOjD0-SR0V2gZ8t5mlx__HB18Tm7_Prpy8X7y6zhrJwybSRIpgumCdsc6_igXGPTaGwbQ01RV7wWiAKZbHPNkRmNaFpRoTHxUpwm7w6-41z31DYxQFxXLaGU01b9qwx2o9Zup3IBUpQYDd4sBt7dzBQm1dvQUNfpgdwcFBeMC4HlvWAOErgUMoKv_wO3bvZD_IXIYMHL_I_b-QFqvAvBk7lbGUHtq1b7qtWx6jjx8u-kR37pNgJvF2A_ebTjMatCLApQZu66iW6nyKb3sBF5cUC2YXL-jmHAZCEqFvVXB91op_Ta26Cuf-wDAvKyQJYXvwH6odM_</recordid><startdate>20090707</startdate><enddate>20090707</enddate><creator>Imamachi, Noritaka</creator><creator>Park, Goon Ho</creator><creator>Lee, Hyosang</creator><creator>Anderson, David J</creator><creator>Simon, Melvin I</creator><creator>Basbaum, Allan I</creator><creator>Han, Sang-Kyou</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090707</creationdate><title>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</title><author>Imamachi, Noritaka ; Park, Goon Ho ; Lee, Hyosang ; Anderson, David J ; Simon, Melvin I ; Basbaum, Allan I ; Han, Sang-Kyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Endothelin-1 - administration & dosage</topic><topic>Endothelin-1 - pharmacology</topic><topic>Genotypes</topic><topic>Histamines</topic><topic>Injections</topic><topic>Mental stimulation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>Mutation - genetics</topic><topic>Neurons</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurons, Afferent - enzymology</topic><topic>Neurons, Afferent - metabolism</topic><topic>Nociceptors</topic><topic>Nociceptors - metabolism</topic><topic>Pain</topic><topic>Pain - metabolism</topic><topic>Phospholipase C beta - deficiency</topic><topic>Phospholipase C beta - metabolism</topic><topic>Physical Stimulation</topic><topic>Posterior Horn Cells - drug effects</topic><topic>Posterior Horn Cells - metabolism</topic><topic>Posterior Horn Cells - pathology</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Pruritus - metabolism</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Serotonin - administration & dosage</topic><topic>Serotonin - analogs & derivatives</topic><topic>Serotonin - pharmacology</topic><topic>Serotonin receptors</topic><topic>Signal transduction</topic><topic>Temperature</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamachi, Noritaka</creatorcontrib><creatorcontrib>Park, Goon Ho</creatorcontrib><creatorcontrib>Lee, Hyosang</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Basbaum, Allan I</creatorcontrib><creatorcontrib>Han, Sang-Kyou</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamachi, Noritaka</au><au>Park, Goon Ho</au><au>Lee, Hyosang</au><au>Anderson, David J</au><au>Simon, Melvin I</au><au>Basbaum, Allan I</au><au>Han, Sang-Kyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-07-07</date><risdate>2009</risdate><volume>106</volume><issue>27</issue><spage>11330</spage><epage>11335</epage><pages>11330-11335</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD⁺ neurons that represent [almost equal to]90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1⁺ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19564617</pmid><doi>10.1073/pnas.0905605106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (27), p.11330-11335 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_19564617 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Behavior, Animal - drug effects Behavioral neuroscience Biological Sciences Endothelin-1 - administration & dosage Endothelin-1 - pharmacology Genotypes Histamines Injections Mental stimulation Mice Mice, Inbred C57BL Models, Biological Molecules Mutation - genetics Neurons Neurons, Afferent - drug effects Neurons, Afferent - enzymology Neurons, Afferent - metabolism Nociceptors Nociceptors - metabolism Pain Pain - metabolism Phospholipase C beta - deficiency Phospholipase C beta - metabolism Physical Stimulation Posterior Horn Cells - drug effects Posterior Horn Cells - metabolism Posterior Horn Cells - pathology Proto-Oncogene Proteins c-fos - metabolism Pruritus - metabolism Receptors Rodents Serotonin - administration & dosage Serotonin - analogs & derivatives Serotonin - pharmacology Serotonin receptors Signal transduction Temperature TRPV Cation Channels - metabolism |
title | TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRPV1-expressing%20primary%20afferents%20generate%20behavioral%20responses%20to%20pruritogens%20via%20multiple%20mechanisms&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Imamachi,%20Noritaka&rft.date=2009-07-07&rft.volume=106&rft.issue=27&rft.spage=11330&rft.epage=11335&rft.pages=11330-11335&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0905605106&rft_dat=%3Cjstor_pubme%3E40483794%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c645t-af8084a34ae1d21b084e2a1cca1dcfec3b96b7117148d2a614fa11fd791ff11f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201365215&rft_id=info:pmid/19564617&rft_jstor_id=40483794&rfr_iscdi=true |