Loading…

Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073

Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric a...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 2009-11, Vol.75 (22), p.6986-6991
Main Authors: Li, Qingyan, Seffernick, Jennifer L, Sadowsky, Michael J, Wackett, Lawrence P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-3b57447927dd4700cc0a8a62a2c269099565ab7c6849d31efcb8bda95d16f73b3
cites cdi_FETCH-LOGICAL-c522t-3b57447927dd4700cc0a8a62a2c269099565ab7c6849d31efcb8bda95d16f73b3
container_end_page 6991
container_issue 22
container_start_page 6986
container_title Applied and Environmental Microbiology
container_volume 75
creator Li, Qingyan
Seffernick, Jennifer L
Sadowsky, Michael J
Wackett, Lawrence P
description Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications.
doi_str_mv 10.1128/AEM.01605-09
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19767460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733604612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-3b57447927dd4700cc0a8a62a2c269099565ab7c6849d31efcb8bda95d16f73b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEotvCjTNESIULKeNv-4K0WhWKaMWB7dmaOM5uqiRu7Sxo_z3e7qoFDpx88DOP3pm3KF4ROCOE6o_z86szIBJEBeZJMSNgdCUYk0-LGYAxFaUcjorjlG4AgIPUz4sjYpRUXMKs-LZc-ziENGHd-3KxxXETO1fOXdeUF9smhh6TL9sYhvIqhOj7HsvpfgSdnzqH5Xy5WJTMgGIvimct9sm_PLwnxfXn8-Xiorr8_uXrYn5ZOUHpVLFaKM6VoappuAJwDlCjpEgdlSZHFlJgrZzU3DSM-NbVum7QiIbIVrGanRSf9t7bTT34xvlxitjb29gNGLc2YGf__hm7tV2Fn5YqLQXhWfD-IIjhbuPTZIcuud1uow-bZFU-H3BJaCbf_ZekhBtGlcng23_Am7CJYz6DpSCM0IrubB_2kIshpejbh8wE7K5Mm8u092Va2Dlf_7nnI3xoLwOnBwCTw76NOLouPXCUEqZAw2O4dbda_-qit5gGi36wSmTKSqNlht7soRaDxVXMousfFAjLeYxWnLHfLB25eQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205958722</pqid></control><display><type>article</type><title>Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073</title><source>American Society for Microbiology (ASM) Journals</source><source>PubMed Central</source><creator>Li, Qingyan ; Seffernick, Jennifer L ; Sadowsky, Michael J ; Wackett, Lawrence P</creator><creatorcontrib>Li, Qingyan ; Seffernick, Jennifer L ; Sadowsky, Michael J ; Wackett, Lawrence P</creatorcontrib><description>Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01605-09</identifier><identifier>PMID: 19767460</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Bacteria - classification ; Bacteria - enzymology ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry ; Biological and medical sciences ; Chelating Agents - chemistry ; Chemical compounds ; Cloning, Molecular ; Cofactors ; E coli ; Enzyme Stability ; Enzymes ; Enzymology and Protein Engineering ; Escherichia coli ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Hydrolases - chemistry ; Hydrolases - genetics ; Hydrolases - isolation &amp; purification ; Hydrolases - metabolism ; Metabolism ; Metals - analysis ; Metals - chemistry ; Microbiology ; Microorganisms ; Phylogeny ; Substrate Specificity ; Temperature ; Triazines - metabolism</subject><ispartof>Applied and Environmental Microbiology, 2009-11, Vol.75 (22), p.6986-6991</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Nov 2009</rights><rights>Copyright © 2009, American Society for Microbiology 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-3b57447927dd4700cc0a8a62a2c269099565ab7c6849d31efcb8bda95d16f73b3</citedby><cites>FETCH-LOGICAL-c522t-3b57447927dd4700cc0a8a62a2c269099565ab7c6849d31efcb8bda95d16f73b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786514/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786514/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,3177,3178,27913,27914,53780,53782</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22137080$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19767460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qingyan</creatorcontrib><creatorcontrib>Seffernick, Jennifer L</creatorcontrib><creatorcontrib>Sadowsky, Michael J</creatorcontrib><creatorcontrib>Wackett, Lawrence P</creatorcontrib><title>Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications.</description><subject>Bacteria - classification</subject><subject>Bacteria - enzymology</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Chelating Agents - chemistry</subject><subject>Chemical compounds</subject><subject>Cloning, Molecular</subject><subject>Cofactors</subject><subject>E coli</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Enzymology and Protein Engineering</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolases - chemistry</subject><subject>Hydrolases - genetics</subject><subject>Hydrolases - isolation &amp; purification</subject><subject>Hydrolases - metabolism</subject><subject>Metabolism</subject><subject>Metals - analysis</subject><subject>Metals - chemistry</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Phylogeny</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>Triazines - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEotvCjTNESIULKeNv-4K0WhWKaMWB7dmaOM5uqiRu7Sxo_z3e7qoFDpx88DOP3pm3KF4ROCOE6o_z86szIBJEBeZJMSNgdCUYk0-LGYAxFaUcjorjlG4AgIPUz4sjYpRUXMKs-LZc-ziENGHd-3KxxXETO1fOXdeUF9smhh6TL9sYhvIqhOj7HsvpfgSdnzqH5Xy5WJTMgGIvimct9sm_PLwnxfXn8-Xiorr8_uXrYn5ZOUHpVLFaKM6VoappuAJwDlCjpEgdlSZHFlJgrZzU3DSM-NbVum7QiIbIVrGanRSf9t7bTT34xvlxitjb29gNGLc2YGf__hm7tV2Fn5YqLQXhWfD-IIjhbuPTZIcuud1uow-bZFU-H3BJaCbf_ZekhBtGlcng23_Am7CJYz6DpSCM0IrubB_2kIshpejbh8wE7K5Mm8u092Va2Dlf_7nnI3xoLwOnBwCTw76NOLouPXCUEqZAw2O4dbda_-qit5gGi36wSmTKSqNlht7soRaDxVXMousfFAjLeYxWnLHfLB25eQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Li, Qingyan</creator><creator>Seffernick, Jennifer L</creator><creator>Sadowsky, Michael J</creator><creator>Wackett, Lawrence P</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073</title><author>Li, Qingyan ; Seffernick, Jennifer L ; Sadowsky, Michael J ; Wackett, Lawrence P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-3b57447927dd4700cc0a8a62a2c269099565ab7c6849d31efcb8bda95d16f73b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria - classification</topic><topic>Bacteria - enzymology</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Chelating Agents - chemistry</topic><topic>Chemical compounds</topic><topic>Cloning, Molecular</topic><topic>Cofactors</topic><topic>E coli</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Enzymology and Protein Engineering</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolases - chemistry</topic><topic>Hydrolases - genetics</topic><topic>Hydrolases - isolation &amp; purification</topic><topic>Hydrolases - metabolism</topic><topic>Metabolism</topic><topic>Metals - analysis</topic><topic>Metals - chemistry</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Phylogeny</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>Triazines - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qingyan</creatorcontrib><creatorcontrib>Seffernick, Jennifer L</creatorcontrib><creatorcontrib>Sadowsky, Michael J</creatorcontrib><creatorcontrib>Wackett, Lawrence P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qingyan</au><au>Seffernick, Jennifer L</au><au>Sadowsky, Michael J</au><au>Wackett, Lawrence P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>75</volume><issue>22</issue><spage>6986</spage><epage>6991</epage><pages>6986-6991</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>19767460</pmid><doi>10.1128/AEM.01605-09</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2009-11, Vol.75 (22), p.6986-6991
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_pubmed_primary_19767460
source American Society for Microbiology (ASM) Journals; PubMed Central
subjects Bacteria - classification
Bacteria - enzymology
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biochemistry
Biological and medical sciences
Chelating Agents - chemistry
Chemical compounds
Cloning, Molecular
Cofactors
E coli
Enzyme Stability
Enzymes
Enzymology and Protein Engineering
Escherichia coli
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Hydrolases - chemistry
Hydrolases - genetics
Hydrolases - isolation & purification
Hydrolases - metabolism
Metabolism
Metals - analysis
Metals - chemistry
Microbiology
Microorganisms
Phylogeny
Substrate Specificity
Temperature
Triazines - metabolism
title Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermostable%20Cyanuric%20Acid%20Hydrolase%20from%20Moorella%20thermoacetica%20ATCC%2039073&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Li,%20Qingyan&rft.date=2009-11-01&rft.volume=75&rft.issue=22&rft.spage=6986&rft.epage=6991&rft.pages=6986-6991&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01605-09&rft_dat=%3Cproquest_pubme%3E733604612%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-3b57447927dd4700cc0a8a62a2c269099565ab7c6849d31efcb8bda95d16f73b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205958722&rft_id=info:pmid/19767460&rfr_iscdi=true