Loading…

PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid

Abscisic acid (ABA) is a ubiquitous phytohormone involved in many developmental processes and stress responses of plants. ABA moves within the plant, and intracellular receptors for ABA have been recently identified; however, no ABA transporter has been described to date. Here, we report the identif...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (5), p.2355-2360
Main Authors: Kang, Joohyun, Hwang, Jae-Ung, Lee, Miyoung, Kim, Yu-Young, Assmann, Sarah M, Martinoia, Enrico, Lee, Youngsook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abscisic acid (ABA) is a ubiquitous phytohormone involved in many developmental processes and stress responses of plants. ABA moves within the plant, and intracellular receptors for ABA have been recently identified; however, no ABA transporter has been described to date. Here, we report the identification of the ATP-binding cassette (ABC) transporter Arabidopsis thaliana Pleiotropic drug resistance transporter PDR12 (AtPDR12)/ABCG40 as a plasma membrane ABA uptake transporter. Uptake of ABA into yeast and BY2 cells expressing AtABCG40 was increased, whereas ABA uptake into protoplasts of atabcg40 plants was decreased compared with control cells. In response to exogenous ABA, the up-regulation of ABA responsive genes was strongly delayed in atabcg40 plants, indicating that ABCG40 is necessary for timely responses to ABA. Stomata of loss-of-function atabcg40 mutants closed more slowly in response to ABA, resulting in reduced drought tolerance. Our results integrate ABA-dependent signaling and transport processes and open another avenue for the engineering of drought-tolerant plants.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0909222107