Loading…
Graphene nanoribbons exfoliated from graphite surface dislocation bands by electrostatic force
We have developed a novel technique to produce long and narrow graphene ribbons with smooth edges. This technique is free of any chemical treatments and involves a combination of two steps: (i) creation of surface dislocation ribbons by high velocity clusters impacting the graphite surface and (ii)...
Saved in:
Published in: | Nanotechnology 2010-05, Vol.21 (19), p.195704-195704 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a novel technique to produce long and narrow graphene ribbons with smooth edges. This technique is free of any chemical treatments and involves a combination of two steps: (i) creation of surface dislocation ribbons by high velocity clusters impacting the graphite surface and (ii) electrostatic transferring of the dislocation ribbons to a desired substrate. The width of the ribbons can be controlled by varying the impact velocity of a cluster jet stream from a gas jet impactor. The electrical transport properties were investigated on the ribbons in field effect transistor (FET) configuration. The p-type behavior observed under ambient conditions was found to be reversed upon annealing at 180 degrees C in a vacuum of 10( - 7) Torr. Charge transfer effects were observed when the degassed graphene was exposed to N(2)O and NH(3). |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/21/19/195704 |