Loading…
Hyperbaric oxygen-stimulated proliferation and growth of osteoblasts may be mediated through the FGF-2 MEK ERK 1 2 NF-κB and PKC JNK pathways
We investigated whether the hyperbaric oxygen (O2) could promote the proliferation of growth-arrested osteoblasts in vitro and the mechanisms involved in this process. Osteoblasts were exposed to different combinations of saturation and pressure of O2 and evaluated at 3 and 7 days. Control cells wer...
Saved in:
Published in: | Connective tissue research 2010-12, Vol.51 (6), p.497-509 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated whether the hyperbaric oxygen (O2) could promote the proliferation of growth-arrested osteoblasts in vitro and the mechanisms involved in this process. Osteoblasts were exposed to different combinations of saturation and pressure of O2 and evaluated at 3 and 7 days. Control cells were cultured under ambient O2 and normal pressure [1 atmosphere (ATA)]; high-pressure group cells were treated with high pressure (2.5 ATA) twice daily; high-O2 group cells were treated with a high concentration O2 (50% O2) twice daily; and high pressure plus high-O2 group cells were treated with high pressure (2.5 ATA) and a high concentration O2 (50% O2) twice daily. Hyperbaric O2 significantly promoted osteoblast proliferation and cell cycle progression after 3 days of treatment. Hyperbaric O2 treatment stimulated significantly increased mRNA expression of fibroblast growth factor (FGF)-2 as well as protein expression levels of Akt, p70S6K, phosphorylated ERK, nuclear factor (NF)-κB, protein kinase C (PKC)α, and phosphorylated c-Jun N-terminal kinase (JNK). Our findings indicate that high pressure and high O2 saturation stimulates growth-arrested osteoblasts to proliferate. These findings suggest that the proliferative effects of hyperbaric O2 on osteoblasts may contribute to the recruitment of osteoblasts at the fracture site. The FGF-2 MEK ERK 1 2 Akt p70S6K NF-κB and PKC JNK pathways may be involved in mediating this process. |
---|---|
ISSN: | 0300-8207 1607-8438 |
DOI: | 10.3109/03008201003746679 |