Loading…

D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex

Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fiel...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (37), p.16366-16371
Main Authors: Xu, Tai-Xiang, Yao, Wei-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1004108107