Loading…

Hidden Part Models for Human Action Recognition: Probabilistic versus Max Margin

We present a discriminative part-based approach for human action recognition from video sequences using motion features. Our model is based on the recently proposed hidden conditional random field (HCRF) for object recognition. Similarly to HCRF for object recognition, we model a human action by a f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2011-07, Vol.33 (7), p.1310-1323
Main Authors: Yang Wang, Mori, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a discriminative part-based approach for human action recognition from video sequences using motion features. Our model is based on the recently proposed hidden conditional random field (HCRF) for object recognition. Similarly to HCRF for object recognition, we model a human action by a flexible constellation of parts conditioned on image observations. Differently from object recognition, our model combines both large-scale global features and local patch features to distinguish various actions. Our experimental results show that our model is comparable to other state-of-the-art approaches in action recognition. In particular, our experimental results demonstrate that combining large-scale global features and local patch features performs significantly better than directly applying HCRF on local patches alone. We also propose an alternative for learning the parameters of an HCRF model in a max-margin framework. We call this method the max-margin hidden conditional random field (MMHCRF). We demonstrate that MMHCRF outperforms HCRF in human action recognition. In addition, MMHCRF can handle a much broader range of complex hidden structures arising in various problems in computer vision.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2010.214