Loading…

Detection of New Vessels on the Optic Disc Using Retinal Photographs

Proliferative diabetic retinopathyis a rare condition likely to lead to severe visual impairment. It is characterized by the development of abnormal new retinal vessels. We describe a method for automatically detecting new vessels on the optic disc using retinal photography. Vessel-like candidate se...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2011-04, Vol.30 (4), p.972-979
Main Authors: Goatman, K A, Fleming, A D, Philip, S, Williams, G J, Olson, J A, Sharp, P F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-fcff3806348602b0835e015a525168d4ab5bd10c413c5a46f1dbb9fdf70191ed3
cites cdi_FETCH-LOGICAL-c318t-fcff3806348602b0835e015a525168d4ab5bd10c413c5a46f1dbb9fdf70191ed3
container_end_page 979
container_issue 4
container_start_page 972
container_title IEEE transactions on medical imaging
container_volume 30
creator Goatman, K A
Fleming, A D
Philip, S
Williams, G J
Olson, J A
Sharp, P F
description Proliferative diabetic retinopathyis a rare condition likely to lead to severe visual impairment. It is characterized by the development of abnormal new retinal vessels. We describe a method for automatically detecting new vessels on the optic disc using retinal photography. Vessel-like candidate segments are first detected using a method based on watershed lines and ridge strength measurement. Fifteen feature parameters, associated with shape, position, orientation, brightness, contrast and line density are calculated for each candidate segment. Based on these features, each segment is categorized as normal or abnormal using a support vector machine (SVM) classifier. The system was trained and tested by cross-validation using 38 images with new vessels and 71 normal images from two diabetic retinal screening centers and one hospital eye clinic. The discrimination performance of the fifteen features was tested against a clinical reference standard. Fourteen features were found to be effective and used in the final test. The area under the receiver operator characteristic curve was 0.911 for detecting images with new vessels on the disc. This accuracy may be sufficient for it to play a useful clinical role in an automated retinopathy analysis system.
doi_str_mv 10.1109/TMI.2010.2099236
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21156389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5667059</ieee_id><sourcerecordid>861204155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-fcff3806348602b0835e015a525168d4ab5bd10c413c5a46f1dbb9fdf70191ed3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK3eBUH25il1Zje73RzF-lGoVqQVbyEfs20kTWJ2i_jvTWntaZiZ5x2Gh7FLhCEiRLfzl8lQQNcJiCIh9RHro1ImECr8PGZ9ECMTAGjRY2fOfQFgqCA6ZT2BqLQ0UZ-Nx-Qp80Vd8dryV_rhH-QclY53E78iPmt8kfFx4TK-cEW15O_kiyop-duq9vWyTZqVO2cnNikdXezrgC0eH-b3z8F09jS5v5sGmUTjA5tZKw1oGRoNIgUjFQGqRAmF2uRhkqo0R8hClJlKQm0xT9PI5nYEGCHlcsBudnebtv7ekPPxuvuLyjKpqN642GgUEHYGOhJ2ZNbWzrVk46Yt1kn7GyPEW3Vxpy7eqov36rrI9f74Jl1Tfgj8u-qAqx1QENFhrbQegYrkHynqcRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861204155</pqid></control><display><type>article</type><title>Detection of New Vessels on the Optic Disc Using Retinal Photographs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Goatman, K A ; Fleming, A D ; Philip, S ; Williams, G J ; Olson, J A ; Sharp, P F</creator><creatorcontrib>Goatman, K A ; Fleming, A D ; Philip, S ; Williams, G J ; Olson, J A ; Sharp, P F</creatorcontrib><description>Proliferative diabetic retinopathyis a rare condition likely to lead to severe visual impairment. It is characterized by the development of abnormal new retinal vessels. We describe a method for automatically detecting new vessels on the optic disc using retinal photography. Vessel-like candidate segments are first detected using a method based on watershed lines and ridge strength measurement. Fifteen feature parameters, associated with shape, position, orientation, brightness, contrast and line density are calculated for each candidate segment. Based on these features, each segment is categorized as normal or abnormal using a support vector machine (SVM) classifier. The system was trained and tested by cross-validation using 38 images with new vessels and 71 normal images from two diabetic retinal screening centers and one hospital eye clinic. The discrimination performance of the fifteen features was tested against a clinical reference standard. Fourteen features were found to be effective and used in the final test. The area under the receiver operator characteristic curve was 0.911 for detecting images with new vessels on the disc. This accuracy may be sufficient for it to play a useful clinical role in an automated retinopathy analysis system.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2010.2099236</identifier><identifier>PMID: 21156389</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Diabetes ; Diabetic Retinopathy - pathology ; Diagnostic Techniques, Ophthalmological ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Neovascularization, Pathologic - pathology ; Optic Disk - anatomy &amp; histology ; Optic Disk - blood supply ; Optical imaging ; Photography - methods ; Pixel ; Retina ; Retinal Vessels - anatomy &amp; histology ; Retinal Vessels - pathology ; Retinopathy ; ROC Curve ; Support vector machines</subject><ispartof>IEEE transactions on medical imaging, 2011-04, Vol.30 (4), p.972-979</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-fcff3806348602b0835e015a525168d4ab5bd10c413c5a46f1dbb9fdf70191ed3</citedby><cites>FETCH-LOGICAL-c318t-fcff3806348602b0835e015a525168d4ab5bd10c413c5a46f1dbb9fdf70191ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5667059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21156389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goatman, K A</creatorcontrib><creatorcontrib>Fleming, A D</creatorcontrib><creatorcontrib>Philip, S</creatorcontrib><creatorcontrib>Williams, G J</creatorcontrib><creatorcontrib>Olson, J A</creatorcontrib><creatorcontrib>Sharp, P F</creatorcontrib><title>Detection of New Vessels on the Optic Disc Using Retinal Photographs</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Proliferative diabetic retinopathyis a rare condition likely to lead to severe visual impairment. It is characterized by the development of abnormal new retinal vessels. We describe a method for automatically detecting new vessels on the optic disc using retinal photography. Vessel-like candidate segments are first detected using a method based on watershed lines and ridge strength measurement. Fifteen feature parameters, associated with shape, position, orientation, brightness, contrast and line density are calculated for each candidate segment. Based on these features, each segment is categorized as normal or abnormal using a support vector machine (SVM) classifier. The system was trained and tested by cross-validation using 38 images with new vessels and 71 normal images from two diabetic retinal screening centers and one hospital eye clinic. The discrimination performance of the fifteen features was tested against a clinical reference standard. Fourteen features were found to be effective and used in the final test. The area under the receiver operator characteristic curve was 0.911 for detecting images with new vessels on the disc. This accuracy may be sufficient for it to play a useful clinical role in an automated retinopathy analysis system.</description><subject>Diabetes</subject><subject>Diabetic Retinopathy - pathology</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Optic Disk - anatomy &amp; histology</subject><subject>Optic Disk - blood supply</subject><subject>Optical imaging</subject><subject>Photography - methods</subject><subject>Pixel</subject><subject>Retina</subject><subject>Retinal Vessels - anatomy &amp; histology</subject><subject>Retinal Vessels - pathology</subject><subject>Retinopathy</subject><subject>ROC Curve</subject><subject>Support vector machines</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK3eBUH25il1Zje73RzF-lGoVqQVbyEfs20kTWJ2i_jvTWntaZiZ5x2Gh7FLhCEiRLfzl8lQQNcJiCIh9RHro1ImECr8PGZ9ECMTAGjRY2fOfQFgqCA6ZT2BqLQ0UZ-Nx-Qp80Vd8dryV_rhH-QclY53E78iPmt8kfFx4TK-cEW15O_kiyop-duq9vWyTZqVO2cnNikdXezrgC0eH-b3z8F09jS5v5sGmUTjA5tZKw1oGRoNIgUjFQGqRAmF2uRhkqo0R8hClJlKQm0xT9PI5nYEGCHlcsBudnebtv7ekPPxuvuLyjKpqN642GgUEHYGOhJ2ZNbWzrVk46Yt1kn7GyPEW3Vxpy7eqov36rrI9f74Jl1Tfgj8u-qAqx1QENFhrbQegYrkHynqcRc</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Goatman, K A</creator><creator>Fleming, A D</creator><creator>Philip, S</creator><creator>Williams, G J</creator><creator>Olson, J A</creator><creator>Sharp, P F</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201104</creationdate><title>Detection of New Vessels on the Optic Disc Using Retinal Photographs</title><author>Goatman, K A ; Fleming, A D ; Philip, S ; Williams, G J ; Olson, J A ; Sharp, P F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-fcff3806348602b0835e015a525168d4ab5bd10c413c5a46f1dbb9fdf70191ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Diabetes</topic><topic>Diabetic Retinopathy - pathology</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Optic Disk - anatomy &amp; histology</topic><topic>Optic Disk - blood supply</topic><topic>Optical imaging</topic><topic>Photography - methods</topic><topic>Pixel</topic><topic>Retina</topic><topic>Retinal Vessels - anatomy &amp; histology</topic><topic>Retinal Vessels - pathology</topic><topic>Retinopathy</topic><topic>ROC Curve</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Goatman, K A</creatorcontrib><creatorcontrib>Fleming, A D</creatorcontrib><creatorcontrib>Philip, S</creatorcontrib><creatorcontrib>Williams, G J</creatorcontrib><creatorcontrib>Olson, J A</creatorcontrib><creatorcontrib>Sharp, P F</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goatman, K A</au><au>Fleming, A D</au><au>Philip, S</au><au>Williams, G J</au><au>Olson, J A</au><au>Sharp, P F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of New Vessels on the Optic Disc Using Retinal Photographs</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2011-04</date><risdate>2011</risdate><volume>30</volume><issue>4</issue><spage>972</spage><epage>979</epage><pages>972-979</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Proliferative diabetic retinopathyis a rare condition likely to lead to severe visual impairment. It is characterized by the development of abnormal new retinal vessels. We describe a method for automatically detecting new vessels on the optic disc using retinal photography. Vessel-like candidate segments are first detected using a method based on watershed lines and ridge strength measurement. Fifteen feature parameters, associated with shape, position, orientation, brightness, contrast and line density are calculated for each candidate segment. Based on these features, each segment is categorized as normal or abnormal using a support vector machine (SVM) classifier. The system was trained and tested by cross-validation using 38 images with new vessels and 71 normal images from two diabetic retinal screening centers and one hospital eye clinic. The discrimination performance of the fifteen features was tested against a clinical reference standard. Fourteen features were found to be effective and used in the final test. The area under the receiver operator characteristic curve was 0.911 for detecting images with new vessels on the disc. This accuracy may be sufficient for it to play a useful clinical role in an automated retinopathy analysis system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21156389</pmid><doi>10.1109/TMI.2010.2099236</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2011-04, Vol.30 (4), p.972-979
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_21156389
source IEEE Electronic Library (IEL) Journals
subjects Diabetes
Diabetic Retinopathy - pathology
Diagnostic Techniques, Ophthalmological
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Neovascularization, Pathologic - pathology
Optic Disk - anatomy & histology
Optic Disk - blood supply
Optical imaging
Photography - methods
Pixel
Retina
Retinal Vessels - anatomy & histology
Retinal Vessels - pathology
Retinopathy
ROC Curve
Support vector machines
title Detection of New Vessels on the Optic Disc Using Retinal Photographs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20New%20Vessels%20on%20the%20Optic%20Disc%20Using%20Retinal%20Photographs&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Goatman,%20K%20A&rft.date=2011-04&rft.volume=30&rft.issue=4&rft.spage=972&rft.epage=979&rft.pages=972-979&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2010.2099236&rft_dat=%3Cproquest_pubme%3E861204155%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-fcff3806348602b0835e015a525168d4ab5bd10c413c5a46f1dbb9fdf70191ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861204155&rft_id=info:pmid/21156389&rft_ieee_id=5667059&rfr_iscdi=true