Loading…
Time-Free Spiking Neural P Systems
Different biological processes take different times to be completed, which can also be influenced by many environmental factors. In this work, a realistic definition of nonsynchronized spiking neural P systems (SN P systems, for short) is considered: during the work of an SN P system, the execution...
Saved in:
Published in: | Neural computation 2011-05, Vol.23 (5), p.1320-1342 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Different biological processes take different times to be completed, which can also be influenced by many environmental factors. In this work, a realistic definition of nonsynchronized spiking neural P systems (SN P systems, for short) is considered: during the work of an SN P system, the execution times of spiking rules cannot be known exactly (i.e., they are arbitrary). In order to establish robust systems against the environmental factors, a special class of SN P systems, called time-free SN P systems, is introduced, which always produce the same computation result independent of the execution times of the rules. The universality of time-free SN P systems is investigated. It is proved that these P systems with extended rules (several spikes can be produced by a rule) are equivalent to register machines. However, if the number of spikes present in the system is bounded, then the power of time-free SN P systems falls, and in this case, a characterization of semilinear sets of natural numbers is obtained. |
---|---|
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/NECO_a_00115 |