Loading…

Inertial effects in diffusion-limited reactions

Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary prob...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2010-03, Vol.22 (10), p.104116-104116
Main Authors: Dorsaz, N, De Michele, C, Piazza, F, Foffi, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153
cites cdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153
container_end_page 104116
container_issue 10
container_start_page 104116
container_title Journal of physics. Condensed matter
container_volume 22
creator Dorsaz, N
De Michele, C
Piazza, F
Foffi, G
description Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.
doi_str_mv 10.1088/0953-8984/22/10/104116
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21389450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855703457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</originalsourceid><addsrcrecordid>eNqNkEtLxDAQx4Mo7rr6FZbePNVm8miSo4iPhQUvCt5CmwdE-rJpD357W7ruRUFhYGDym_-EH0JbwDeApcyw4jSVSrKMkAzwVAwgP0FroDmkOZNvp2h9hFboIsZ3jDGTlJ2jFQEqFeN4jbJd4_ohFFXivHdmiEloEhu8H2Nom7QKdRicTXpXmGEaxEt05osquqtD36DXh_uXu6d0__y4u7vdp4YRMqTKcsGo9QQXjBouuAdhgTtLGDiOC6vAEEaZMUZRgy1lomReqbzkApfA6QZdL7ld336MLg66DtG4qioa145RS54LwQTIf5BTJGVcTGS-kKZvY-yd110f6qL_1ID1bFXPwvQsTBOyDGer0-L2cGIsa2ePa98aJyBdgNB2x9ffw3Rn_cTDT_6PT3wB77-NAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855703457</pqid></control><display><type>article</type><title>Inertial effects in diffusion-limited reactions</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dorsaz, N ; De Michele, C ; Piazza, F ; Foffi, G</creator><creatorcontrib>Dorsaz, N ; De Michele, C ; Piazza, F ; Foffi, G</creatorcontrib><description>Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/10/104116</identifier><identifier>PMID: 21389450</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Biological ; Biophysics - methods ; Boundaries ; Catalysis ; Colloids - chemistry ; Computer Simulation ; Condensed matter ; Diffusion ; Enzymes ; Enzymes - chemistry ; Inertial ; Ligands ; Mathematical models ; Models, Statistical ; Models, Theoretical ; Particle Size ; Proteins - chemistry</subject><ispartof>Journal of physics. Condensed matter, 2010-03, Vol.22 (10), p.104116-104116</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</citedby><cites>FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21389450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorsaz, N</creatorcontrib><creatorcontrib>De Michele, C</creatorcontrib><creatorcontrib>Piazza, F</creatorcontrib><creatorcontrib>Foffi, G</creatorcontrib><title>Inertial effects in diffusion-limited reactions</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.</description><subject>Algorithms</subject><subject>Biological</subject><subject>Biophysics - methods</subject><subject>Boundaries</subject><subject>Catalysis</subject><subject>Colloids - chemistry</subject><subject>Computer Simulation</subject><subject>Condensed matter</subject><subject>Diffusion</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>Inertial</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Particle Size</subject><subject>Proteins - chemistry</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAQx4Mo7rr6FZbePNVm8miSo4iPhQUvCt5CmwdE-rJpD357W7ruRUFhYGDym_-EH0JbwDeApcyw4jSVSrKMkAzwVAwgP0FroDmkOZNvp2h9hFboIsZ3jDGTlJ2jFQEqFeN4jbJd4_ohFFXivHdmiEloEhu8H2Nom7QKdRicTXpXmGEaxEt05osquqtD36DXh_uXu6d0__y4u7vdp4YRMqTKcsGo9QQXjBouuAdhgTtLGDiOC6vAEEaZMUZRgy1lomReqbzkApfA6QZdL7ld336MLg66DtG4qioa145RS54LwQTIf5BTJGVcTGS-kKZvY-yd110f6qL_1ID1bFXPwvQsTBOyDGer0-L2cGIsa2ePa98aJyBdgNB2x9ffw3Rn_cTDT_6PT3wB77-NAg</recordid><startdate>20100317</startdate><enddate>20100317</enddate><creator>Dorsaz, N</creator><creator>De Michele, C</creator><creator>Piazza, F</creator><creator>Foffi, G</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20100317</creationdate><title>Inertial effects in diffusion-limited reactions</title><author>Dorsaz, N ; De Michele, C ; Piazza, F ; Foffi, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biological</topic><topic>Biophysics - methods</topic><topic>Boundaries</topic><topic>Catalysis</topic><topic>Colloids - chemistry</topic><topic>Computer Simulation</topic><topic>Condensed matter</topic><topic>Diffusion</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>Inertial</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Particle Size</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorsaz, N</creatorcontrib><creatorcontrib>De Michele, C</creatorcontrib><creatorcontrib>Piazza, F</creatorcontrib><creatorcontrib>Foffi, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorsaz, N</au><au>De Michele, C</au><au>Piazza, F</au><au>Foffi, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial effects in diffusion-limited reactions</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-03-17</date><risdate>2010</risdate><volume>22</volume><issue>10</issue><spage>104116</spage><epage>104116</epage><pages>104116-104116</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>21389450</pmid><doi>10.1088/0953-8984/22/10/104116</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2010-03, Vol.22 (10), p.104116-104116
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_21389450
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Algorithms
Biological
Biophysics - methods
Boundaries
Catalysis
Colloids - chemistry
Computer Simulation
Condensed matter
Diffusion
Enzymes
Enzymes - chemistry
Inertial
Ligands
Mathematical models
Models, Statistical
Models, Theoretical
Particle Size
Proteins - chemistry
title Inertial effects in diffusion-limited reactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20effects%20in%20diffusion-limited%20reactions&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Dorsaz,%20N&rft.date=2010-03-17&rft.volume=22&rft.issue=10&rft.spage=104116&rft.epage=104116&rft.pages=104116-104116&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/0953-8984/22/10/104116&rft_dat=%3Cproquest_pubme%3E855703457%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855703457&rft_id=info:pmid/21389450&rfr_iscdi=true