Loading…
Inertial effects in diffusion-limited reactions
Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary prob...
Saved in:
Published in: | Journal of physics. Condensed matter 2010-03, Vol.22 (10), p.104116-104116 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153 |
container_end_page | 104116 |
container_issue | 10 |
container_start_page | 104116 |
container_title | Journal of physics. Condensed matter |
container_volume | 22 |
creator | Dorsaz, N De Michele, C Piazza, F Foffi, G |
description | Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments. |
doi_str_mv | 10.1088/0953-8984/22/10/104116 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21389450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855703457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</originalsourceid><addsrcrecordid>eNqNkEtLxDAQx4Mo7rr6FZbePNVm8miSo4iPhQUvCt5CmwdE-rJpD357W7ruRUFhYGDym_-EH0JbwDeApcyw4jSVSrKMkAzwVAwgP0FroDmkOZNvp2h9hFboIsZ3jDGTlJ2jFQEqFeN4jbJd4_ohFFXivHdmiEloEhu8H2Nom7QKdRicTXpXmGEaxEt05osquqtD36DXh_uXu6d0__y4u7vdp4YRMqTKcsGo9QQXjBouuAdhgTtLGDiOC6vAEEaZMUZRgy1lomReqbzkApfA6QZdL7ld336MLg66DtG4qioa145RS54LwQTIf5BTJGVcTGS-kKZvY-yd110f6qL_1ID1bFXPwvQsTBOyDGer0-L2cGIsa2ePa98aJyBdgNB2x9ffw3Rn_cTDT_6PT3wB77-NAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855703457</pqid></control><display><type>article</type><title>Inertial effects in diffusion-limited reactions</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dorsaz, N ; De Michele, C ; Piazza, F ; Foffi, G</creator><creatorcontrib>Dorsaz, N ; De Michele, C ; Piazza, F ; Foffi, G</creatorcontrib><description>Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/10/104116</identifier><identifier>PMID: 21389450</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Biological ; Biophysics - methods ; Boundaries ; Catalysis ; Colloids - chemistry ; Computer Simulation ; Condensed matter ; Diffusion ; Enzymes ; Enzymes - chemistry ; Inertial ; Ligands ; Mathematical models ; Models, Statistical ; Models, Theoretical ; Particle Size ; Proteins - chemistry</subject><ispartof>Journal of physics. Condensed matter, 2010-03, Vol.22 (10), p.104116-104116</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</citedby><cites>FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21389450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorsaz, N</creatorcontrib><creatorcontrib>De Michele, C</creatorcontrib><creatorcontrib>Piazza, F</creatorcontrib><creatorcontrib>Foffi, G</creatorcontrib><title>Inertial effects in diffusion-limited reactions</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.</description><subject>Algorithms</subject><subject>Biological</subject><subject>Biophysics - methods</subject><subject>Boundaries</subject><subject>Catalysis</subject><subject>Colloids - chemistry</subject><subject>Computer Simulation</subject><subject>Condensed matter</subject><subject>Diffusion</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>Inertial</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Particle Size</subject><subject>Proteins - chemistry</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAQx4Mo7rr6FZbePNVm8miSo4iPhQUvCt5CmwdE-rJpD357W7ruRUFhYGDym_-EH0JbwDeApcyw4jSVSrKMkAzwVAwgP0FroDmkOZNvp2h9hFboIsZ3jDGTlJ2jFQEqFeN4jbJd4_ohFFXivHdmiEloEhu8H2Nom7QKdRicTXpXmGEaxEt05osquqtD36DXh_uXu6d0__y4u7vdp4YRMqTKcsGo9QQXjBouuAdhgTtLGDiOC6vAEEaZMUZRgy1lomReqbzkApfA6QZdL7ld336MLg66DtG4qioa145RS54LwQTIf5BTJGVcTGS-kKZvY-yd110f6qL_1ID1bFXPwvQsTBOyDGer0-L2cGIsa2ePa98aJyBdgNB2x9ffw3Rn_cTDT_6PT3wB77-NAg</recordid><startdate>20100317</startdate><enddate>20100317</enddate><creator>Dorsaz, N</creator><creator>De Michele, C</creator><creator>Piazza, F</creator><creator>Foffi, G</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20100317</creationdate><title>Inertial effects in diffusion-limited reactions</title><author>Dorsaz, N ; De Michele, C ; Piazza, F ; Foffi, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biological</topic><topic>Biophysics - methods</topic><topic>Boundaries</topic><topic>Catalysis</topic><topic>Colloids - chemistry</topic><topic>Computer Simulation</topic><topic>Condensed matter</topic><topic>Diffusion</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>Inertial</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Particle Size</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorsaz, N</creatorcontrib><creatorcontrib>De Michele, C</creatorcontrib><creatorcontrib>Piazza, F</creatorcontrib><creatorcontrib>Foffi, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorsaz, N</au><au>De Michele, C</au><au>Piazza, F</au><au>Foffi, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial effects in diffusion-limited reactions</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-03-17</date><risdate>2010</risdate><volume>22</volume><issue>10</issue><spage>104116</spage><epage>104116</epage><pages>104116-104116</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>21389450</pmid><doi>10.1088/0953-8984/22/10/104116</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2010-03, Vol.22 (10), p.104116-104116 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pubmed_primary_21389450 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Algorithms Biological Biophysics - methods Boundaries Catalysis Colloids - chemistry Computer Simulation Condensed matter Diffusion Enzymes Enzymes - chemistry Inertial Ligands Mathematical models Models, Statistical Models, Theoretical Particle Size Proteins - chemistry |
title | Inertial effects in diffusion-limited reactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20effects%20in%20diffusion-limited%20reactions&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Dorsaz,%20N&rft.date=2010-03-17&rft.volume=22&rft.issue=10&rft.spage=104116&rft.epage=104116&rft.pages=104116-104116&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/0953-8984/22/10/104116&rft_dat=%3Cproquest_pubme%3E855703457%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-9d5743df20a43c575f17d15ed241e50ad91c2434ccc93c0d347b4f996b570b153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855703457&rft_id=info:pmid/21389450&rfr_iscdi=true |