Loading…

Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen

Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2011-05, Vol.22 (19), p.195604-195604
Main Authors: Guo, Huizhang, Chen, Yuanzhi, Chen, Xiaozhen, Wen, Ruitao, Yue, Guang-Hui, Peng, Dong-Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-34e96ae638fd061454638c342fc8a9bfb62adcb640ab0e911420b1c4f5871f6a3
cites cdi_FETCH-LOGICAL-c390t-34e96ae638fd061454638c342fc8a9bfb62adcb640ab0e911420b1c4f5871f6a3
container_end_page 195604
container_issue 19
container_start_page 195604
container_title Nanotechnology
container_volume 22
creator Guo, Huizhang
Chen, Yuanzhi
Chen, Xiaozhen
Wen, Ruitao
Yue, Guang-Hui
Peng, Dong-Liang
description Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.
doi_str_mv 10.1088/0957-4484/22/19/195604
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21430312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>858780207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-34e96ae638fd061454638c342fc8a9bfb62adcb640ab0e911420b1c4f5871f6a3</originalsourceid><addsrcrecordid>eNqNkLFuFDEQhi1ERC6BV4jcUS3nsb0-b0cUEYgUkSapLa93nDPasxd7r7iOPANvyJPg04Y0UCBZ8mjm-__R_IRcAPsATOs169pNI6WWa87X0NXXKiZfkRUIBY1quX5NVi_QKTkr5RtjAJrDG3LKQQomgK_I07V1YURaDnHeYgmFJk8j2tzsUkxDKBPmgvTy8ePXQF3K-OvHz7LFcaTRxjTZPAc3YqE2DrQahEztNI3B2TmkSH3KtJZ2PFSMPmLEvAzqku1hyKm23pITb8eC757_c_Jw_en-6ktze_f55urytnGiY3MjJHbKohLaD0yBbGUtnZDcO2273veK28H1SjLbM-wAJGc9OOlbvQGvrDgn7xffKafveyyz2YXi6iU2YtoXoyuoGWebSqqFdDmVktGbKYedzQcDzBzTN8dgzTFYw7mBzizpV-HF84p9v8PhRfYn7grAAoQ0_b9p87fm36yZBi9-A08sn7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858780207</pqid></control><display><type>article</type><title>Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Guo, Huizhang ; Chen, Yuanzhi ; Chen, Xiaozhen ; Wen, Ruitao ; Yue, Guang-Hui ; Peng, Dong-Liang</creator><creatorcontrib>Guo, Huizhang ; Chen, Yuanzhi ; Chen, Xiaozhen ; Wen, Ruitao ; Yue, Guang-Hui ; Peng, Dong-Liang</creatorcontrib><description>Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/22/19/195604</identifier><identifier>PMID: 21430312</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Amines - chemistry ; Catalysis ; Hydrogen - chemistry ; Hydrogen-Ion Concentration ; Magnetics ; Microscopy, Electron, Transmission - methods ; Nanoparticles - chemistry ; Nanotechnology - methods ; Nickel - chemistry ; Silver - chemistry ; Solvents - chemistry ; Spectrophotometry, Ultraviolet - methods ; Surface Plasmon Resonance ; Surface-Active Agents - chemistry ; X-Ray Diffraction</subject><ispartof>Nanotechnology, 2011-05, Vol.22 (19), p.195604-195604</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-34e96ae638fd061454638c342fc8a9bfb62adcb640ab0e911420b1c4f5871f6a3</citedby><cites>FETCH-LOGICAL-c390t-34e96ae638fd061454638c342fc8a9bfb62adcb640ab0e911420b1c4f5871f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21430312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Huizhang</creatorcontrib><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Chen, Xiaozhen</creatorcontrib><creatorcontrib>Wen, Ruitao</creatorcontrib><creatorcontrib>Yue, Guang-Hui</creatorcontrib><creatorcontrib>Peng, Dong-Liang</creatorcontrib><title>Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.</description><subject>Amines - chemistry</subject><subject>Catalysis</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Magnetics</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nickel - chemistry</subject><subject>Silver - chemistry</subject><subject>Solvents - chemistry</subject><subject>Spectrophotometry, Ultraviolet - methods</subject><subject>Surface Plasmon Resonance</subject><subject>Surface-Active Agents - chemistry</subject><subject>X-Ray Diffraction</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkLFuFDEQhi1ERC6BV4jcUS3nsb0-b0cUEYgUkSapLa93nDPasxd7r7iOPANvyJPg04Y0UCBZ8mjm-__R_IRcAPsATOs169pNI6WWa87X0NXXKiZfkRUIBY1quX5NVi_QKTkr5RtjAJrDG3LKQQomgK_I07V1YURaDnHeYgmFJk8j2tzsUkxDKBPmgvTy8ePXQF3K-OvHz7LFcaTRxjTZPAc3YqE2DrQahEztNI3B2TmkSH3KtJZ2PFSMPmLEvAzqku1hyKm23pITb8eC757_c_Jw_en-6ktze_f55urytnGiY3MjJHbKohLaD0yBbGUtnZDcO2273veK28H1SjLbM-wAJGc9OOlbvQGvrDgn7xffKafveyyz2YXi6iU2YtoXoyuoGWebSqqFdDmVktGbKYedzQcDzBzTN8dgzTFYw7mBzizpV-HF84p9v8PhRfYn7grAAoQ0_b9p87fm36yZBi9-A08sn7s</recordid><startdate>20110513</startdate><enddate>20110513</enddate><creator>Guo, Huizhang</creator><creator>Chen, Yuanzhi</creator><creator>Chen, Xiaozhen</creator><creator>Wen, Ruitao</creator><creator>Yue, Guang-Hui</creator><creator>Peng, Dong-Liang</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110513</creationdate><title>Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen</title><author>Guo, Huizhang ; Chen, Yuanzhi ; Chen, Xiaozhen ; Wen, Ruitao ; Yue, Guang-Hui ; Peng, Dong-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-34e96ae638fd061454638c342fc8a9bfb62adcb640ab0e911420b1c4f5871f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amines - chemistry</topic><topic>Catalysis</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Magnetics</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nickel - chemistry</topic><topic>Silver - chemistry</topic><topic>Solvents - chemistry</topic><topic>Spectrophotometry, Ultraviolet - methods</topic><topic>Surface Plasmon Resonance</topic><topic>Surface-Active Agents - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huizhang</creatorcontrib><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Chen, Xiaozhen</creatorcontrib><creatorcontrib>Wen, Ruitao</creatorcontrib><creatorcontrib>Yue, Guang-Hui</creatorcontrib><creatorcontrib>Peng, Dong-Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huizhang</au><au>Chen, Yuanzhi</au><au>Chen, Xiaozhen</au><au>Wen, Ruitao</au><au>Yue, Guang-Hui</au><au>Peng, Dong-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2011-05-13</date><risdate>2011</risdate><volume>22</volume><issue>19</issue><spage>195604</spage><epage>195604</epage><pages>195604-195604</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>21430312</pmid><doi>10.1088/0957-4484/22/19/195604</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2011-05, Vol.22 (19), p.195604-195604
issn 0957-4484
1361-6528
language eng
recordid cdi_pubmed_primary_21430312
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Amines - chemistry
Catalysis
Hydrogen - chemistry
Hydrogen-Ion Concentration
Magnetics
Microscopy, Electron, Transmission - methods
Nanoparticles - chemistry
Nanotechnology - methods
Nickel - chemistry
Silver - chemistry
Solvents - chemistry
Spectrophotometry, Ultraviolet - methods
Surface Plasmon Resonance
Surface-Active Agents - chemistry
X-Ray Diffraction
title Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20synthesis%20of%20near-monodisperse%20Ag@Ni%20core%E2%80%93shell%20nanoparticles%20and%20their%20application%20for%20catalytic%20generation%20of%20hydrogen&rft.jtitle=Nanotechnology&rft.au=Guo,%20Huizhang&rft.date=2011-05-13&rft.volume=22&rft.issue=19&rft.spage=195604&rft.epage=195604&rft.pages=195604-195604&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/22/19/195604&rft_dat=%3Cproquest_pubme%3E858780207%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-34e96ae638fd061454638c342fc8a9bfb62adcb640ab0e911420b1c4f5871f6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858780207&rft_id=info:pmid/21430312&rfr_iscdi=true