Loading…

Bayesian sampling in visual perception

It is well-established that some aspects of perception and action can be understood as probabilistic inferences over underlying probability distributions. In some situations, it would be advantageous for the nervous system to sample interpretations from a probability distribution rather than commit...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2011-07, Vol.108 (30), p.12491-12496
Main Authors: Moreno-Bote, Rubén, Knill, David C, Pouget, Alexandre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well-established that some aspects of perception and action can be understood as probabilistic inferences over underlying probability distributions. In some situations, it would be advantageous for the nervous system to sample interpretations from a probability distribution rather than commit to a particular interpretation. In this study, we asked whether visual percepts correspond to samples from the probability distribution over image interpretations, a form of sampling that we refer to as Bayesian sampling. To test this idea, we manipulated pairs of sensory cues in a bistable display consisting of two superimposed moving drifting gratings, and we asked subjects to report their perceived changes in depth ordering. We report that the fractions of dominance of each percept follow the multiplicative rule predicted by Bayesian sampling. Furthermore, we show that attractor neural networks can sample probability distributions if input currents add linearly and encode probability distributions with probabilistic population codes.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1101430108