Loading…

Neutrophil Proteinase 3 Induces Diabetes in a Mouse Model of Glucose Tolerance

Type 1 diabetes is considered to be an autoimmune disease in which T cells attack pancreatic islet cells. Impaired glucose tolerance with type 2 diabetes has been classified as an obesity-associated metabolic syndrome. However, recent studies have revealed that type 2 diabetes is an autoinflammatory...

Full description

Saved in:
Bibliographic Details
Published in:Endocrine research 2012-02, Vol.37 (1), p.35-45
Main Authors: Bae, Suyoung, Choi, Jida, Hong, Jaewoo, Jhun, Hyunjhung, Hong, Kwangwon, Kang, Taebong, Song, Keeho, Jeong, Sangmin, Yum, Hokee, Kim, Soohyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Type 1 diabetes is considered to be an autoimmune disease in which T cells attack pancreatic islet cells. Impaired glucose tolerance with type 2 diabetes has been classified as an obesity-associated metabolic syndrome. However, recent studies have revealed that type 2 diabetes is an autoinflammatory disease due to an imbalance of inflammatory cytokine production and related molecular components that cause inflammation. Insulin-like growth factor (IGF) and the insulin-like growth factor-binding protein-3 (IGFBP3) system are known to be involved in the development of experimental diabetic nephropathy, and urinary IGFBP3 protease activity has been observed in patients with type 2 diabetes. A serine protease was found to be responsible for the proteolytic activity in diabetic urine; however, the identity of the precise enzyme remains unknown. We investigated neutrophil proteinase 3 (PR3) to see whether it has specific enzymatic activity associated with insulin-like growth factor-1 and IGFBP3. In our study, both molecules were sufficiently degraded, which leads us to believe that PR3 may induce insulin resistance in the mouse model utilized. In addition, we found that PR3 in the urine of diabetic patients similarly affects insulin resistance. Moreover, PR3-immunized mice had an increase in glucose clearance due to inhibition of PR3 activity. As such, PR3 can be considered as an inflammatory enzyme directly linking inflammation to type 2 diabetes through downregulation of insulin-like growth factor-1/IGFBP3.
ISSN:0743-5800
1532-4206
DOI:10.3109/07435800.2011.620579