Loading…

Features in Continuous Parallel Coordinates

Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We sho...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2011-12, Vol.17 (12), p.1912-1921
Main Authors: Lehmann, D. J., Theisel, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83
cites cdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83
container_end_page 1921
container_issue 12
container_start_page 1912
container_title IEEE transactions on visualization and computer graphics
container_volume 17
creator Lehmann, D. J.
Theisel, H.
description Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis.
doi_str_mv 10.1109/TVCG.2011.200
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22034308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6064954</ieee_id><sourcerecordid>901006449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK0ePQnSmwdJnf3Ifhwl2CoU9FC9LpvsFCJpUneTg__eDa29zAwzDzPvvITcUlhQCuZp81WsFgwoTQHOyJQaQTPIQZ6nGpTKmGRyQq5i_AagQmhzSSaMARcc9JQ8LtH1Q8A4r9t50bV93Q7dEOcfLrimwSb1uuDr1vUYr8nF1jURb455Rj6XL5viNVu_r96K53VWccr6zGioNJVOKe7LVJcovabeKOMV6BwRK8250wBGGi6YrsAZVXKX_imF13xGHg5796H7GTD2dlfHCpvGtZi0WQMUQAphEpkdyCp0MQbc2n2ody78Wgp2tMeO9tjRnhQg8ffHzUO5Q3-i__1IwN0BqJPM01imayYX_A_lUmbX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901006449</pqid></control><display><type>article</type><title>Features in Continuous Parallel Coordinates</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lehmann, D. J. ; Theisel, H.</creator><creatorcontrib>Lehmann, D. J. ; Theisel, H.</creatorcontrib><description>Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2011.200</identifier><identifier>PMID: 22034308</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Data visualization ; Feature extraction ; Features ; Mathematical model ; Parallel Coordinates ; Three dimensional displays ; Topology ; Vectors ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2011-12, Vol.17 (12), p.1912-1921</ispartof><rights>2011 IEEE</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</citedby><cites>FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6064954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22034308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehmann, D. J.</creatorcontrib><creatorcontrib>Theisel, H.</creatorcontrib><title>Features in Continuous Parallel Coordinates</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis.</description><subject>Data visualization</subject><subject>Feature extraction</subject><subject>Features</subject><subject>Mathematical model</subject><subject>Parallel Coordinates</subject><subject>Three dimensional displays</subject><subject>Topology</subject><subject>Vectors</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK0ePQnSmwdJnf3Ifhwl2CoU9FC9LpvsFCJpUneTg__eDa29zAwzDzPvvITcUlhQCuZp81WsFgwoTQHOyJQaQTPIQZ6nGpTKmGRyQq5i_AagQmhzSSaMARcc9JQ8LtH1Q8A4r9t50bV93Q7dEOcfLrimwSb1uuDr1vUYr8nF1jURb455Rj6XL5viNVu_r96K53VWccr6zGioNJVOKe7LVJcovabeKOMV6BwRK8250wBGGi6YrsAZVXKX_imF13xGHg5796H7GTD2dlfHCpvGtZi0WQMUQAphEpkdyCp0MQbc2n2ody78Wgp2tMeO9tjRnhQg8ffHzUO5Q3-i__1IwN0BqJPM01imayYX_A_lUmbX</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lehmann, D. J.</creator><creator>Theisel, H.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Features in Continuous Parallel Coordinates</title><author>Lehmann, D. J. ; Theisel, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data visualization</topic><topic>Feature extraction</topic><topic>Features</topic><topic>Mathematical model</topic><topic>Parallel Coordinates</topic><topic>Three dimensional displays</topic><topic>Topology</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, D. J.</creatorcontrib><creatorcontrib>Theisel, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehmann, D. J.</au><au>Theisel, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Features in Continuous Parallel Coordinates</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>17</volume><issue>12</issue><spage>1912</spage><epage>1921</epage><pages>1912-1921</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22034308</pmid><doi>10.1109/TVCG.2011.200</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2011-12, Vol.17 (12), p.1912-1921
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_22034308
source IEEE Electronic Library (IEL) Journals
subjects Data visualization
Feature extraction
Features
Mathematical model
Parallel Coordinates
Three dimensional displays
Topology
Vectors
Visualization
title Features in Continuous Parallel Coordinates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Features%20in%20Continuous%20Parallel%20Coordinates&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lehmann,%20D.%20J.&rft.date=2011-12-01&rft.volume=17&rft.issue=12&rft.spage=1912&rft.epage=1921&rft.pages=1912-1921&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2011.200&rft_dat=%3Cproquest_pubme%3E901006449%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901006449&rft_id=info:pmid/22034308&rft_ieee_id=6064954&rfr_iscdi=true