Loading…
Features in Continuous Parallel Coordinates
Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We sho...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2011-12, Vol.17 (12), p.1912-1921 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83 |
container_end_page | 1921 |
container_issue | 12 |
container_start_page | 1912 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 17 |
creator | Lehmann, D. J. Theisel, H. |
description | Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis. |
doi_str_mv | 10.1109/TVCG.2011.200 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22034308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6064954</ieee_id><sourcerecordid>901006449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK0ePQnSmwdJnf3Ifhwl2CoU9FC9LpvsFCJpUneTg__eDa29zAwzDzPvvITcUlhQCuZp81WsFgwoTQHOyJQaQTPIQZ6nGpTKmGRyQq5i_AagQmhzSSaMARcc9JQ8LtH1Q8A4r9t50bV93Q7dEOcfLrimwSb1uuDr1vUYr8nF1jURb455Rj6XL5viNVu_r96K53VWccr6zGioNJVOKe7LVJcovabeKOMV6BwRK8250wBGGi6YrsAZVXKX_imF13xGHg5796H7GTD2dlfHCpvGtZi0WQMUQAphEpkdyCp0MQbc2n2ody78Wgp2tMeO9tjRnhQg8ffHzUO5Q3-i__1IwN0BqJPM01imayYX_A_lUmbX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901006449</pqid></control><display><type>article</type><title>Features in Continuous Parallel Coordinates</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lehmann, D. J. ; Theisel, H.</creator><creatorcontrib>Lehmann, D. J. ; Theisel, H.</creatorcontrib><description>Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2011.200</identifier><identifier>PMID: 22034308</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Data visualization ; Feature extraction ; Features ; Mathematical model ; Parallel Coordinates ; Three dimensional displays ; Topology ; Vectors ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2011-12, Vol.17 (12), p.1912-1921</ispartof><rights>2011 IEEE</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</citedby><cites>FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6064954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22034308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehmann, D. J.</creatorcontrib><creatorcontrib>Theisel, H.</creatorcontrib><title>Features in Continuous Parallel Coordinates</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis.</description><subject>Data visualization</subject><subject>Feature extraction</subject><subject>Features</subject><subject>Mathematical model</subject><subject>Parallel Coordinates</subject><subject>Three dimensional displays</subject><subject>Topology</subject><subject>Vectors</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK0ePQnSmwdJnf3Ifhwl2CoU9FC9LpvsFCJpUneTg__eDa29zAwzDzPvvITcUlhQCuZp81WsFgwoTQHOyJQaQTPIQZ6nGpTKmGRyQq5i_AagQmhzSSaMARcc9JQ8LtH1Q8A4r9t50bV93Q7dEOcfLrimwSb1uuDr1vUYr8nF1jURb455Rj6XL5viNVu_r96K53VWccr6zGioNJVOKe7LVJcovabeKOMV6BwRK8250wBGGi6YrsAZVXKX_imF13xGHg5796H7GTD2dlfHCpvGtZi0WQMUQAphEpkdyCp0MQbc2n2ody78Wgp2tMeO9tjRnhQg8ffHzUO5Q3-i__1IwN0BqJPM01imayYX_A_lUmbX</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lehmann, D. J.</creator><creator>Theisel, H.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Features in Continuous Parallel Coordinates</title><author>Lehmann, D. J. ; Theisel, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data visualization</topic><topic>Feature extraction</topic><topic>Features</topic><topic>Mathematical model</topic><topic>Parallel Coordinates</topic><topic>Three dimensional displays</topic><topic>Topology</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, D. J.</creatorcontrib><creatorcontrib>Theisel, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehmann, D. J.</au><au>Theisel, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Features in Continuous Parallel Coordinates</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>17</volume><issue>12</issue><spage>1912</spage><epage>1921</epage><pages>1912-1921</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs. In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC's/CSP's features concerning the data analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22034308</pmid><doi>10.1109/TVCG.2011.200</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2011-12, Vol.17 (12), p.1912-1921 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_22034308 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Data visualization Feature extraction Features Mathematical model Parallel Coordinates Three dimensional displays Topology Vectors Visualization |
title | Features in Continuous Parallel Coordinates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Features%20in%20Continuous%20Parallel%20Coordinates&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lehmann,%20D.%20J.&rft.date=2011-12-01&rft.volume=17&rft.issue=12&rft.spage=1912&rft.epage=1921&rft.pages=1912-1921&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2011.200&rft_dat=%3Cproquest_pubme%3E901006449%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-980c816a773db80cbe6d81d979d7085eeec833a8009693428c0a97b3a110b4d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901006449&rft_id=info:pmid/22034308&rft_ieee_id=6064954&rfr_iscdi=true |