Loading…
Mutation of the Sensor Kinase chvG in Rhizobium leguminosarum Negatively Impacts Cellular Metabolism, Outer Membrane Stability, and Symbiosis
Two-component signal transduction systems (TCS) are a main strategy used by bacteria to sense and adapt to changes in their environment. In the legume symbiont Rhizobium leguminosarum biovar viciae VF39, mutation of chvG, a histidine kinase, caused a number of pleiotropic phenotypes. ChvG mutants ar...
Saved in:
Published in: | Journal of Bacteriology 2012-02, Vol.194 (4), p.768-777 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-component signal transduction systems (TCS) are a main strategy used by bacteria to sense and adapt to changes in their environment. In the legume symbiont Rhizobium leguminosarum biovar viciae VF39, mutation of chvG, a histidine kinase, caused a number of pleiotropic phenotypes. ChvG mutants are unable to grow on proline, glutamate, histidine, or arginine as the sole carbon source. The chvG mutant secreted smaller amounts of acidic and neutral surface polysaccharides and accumulated abnormally large amounts of poly-ss-hydroxybutyrate. Mutation of chvG caused symbiotic defects on peas, lentils, and vetch; nodules formed by the chvG mutant were small and white and contained only a few cells that had failed to differentiate into bacteroids. Mutation of chvG also destabilized the outer membrane of R. leguminosarum, resulting in increased sensitivity to membrane stressors. Constitutive expression of ropB, the outer membrane protein-encoding gene, restored membrane stability and rescued the sensitivity phenotypes described above. Similar phenotypes have been described for mutations in other ChvG-regulated genes encoding a conserved operon of unknown function and in the fabXL genes required for synthesis of the lipid A very-long-chain fatty acid, suggesting that ChvG is a key component of the envelope stress response in Rhizobium leguminosarum. Collectively, the results of this study demonstrate the important and unique role the ChvG/ChvI TCS plays in the physiology, metabolism, and symbiotic competency of R. leguminosarum. |
---|---|
ISSN: | 0021-9193 1098-5530 1067-8832 |
DOI: | 10.1128/JB.06357-11 |