Loading…

Spatial Filtering for Robust Myoelectric Control

Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, dif...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2012-05, Vol.59 (5), p.1436-1443
Main Authors: Hahne, Janne Mathias, Graimann, Bernhard, Muller, Klaus-Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, different multiclass extensions of the common spatial patterns algorithm are applied to high-density surface EMG signals acquired from the forearms of ten healthy subjects. Visualization of the obtained filter coefficients provides insight into the physiology of the muscles related to the performed contractions. The CSP methods are compared with a commonly used pattern recognition approach in a six-class classification task. Cross-validation results show a significant improvement in performance and a higher robustness against noise than commonly used pattern recognition methods.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2012.2188799