Loading…
Giant enhancement of upconversion in ultra-small Er3+/Yb3+:NaYF4 nanoparticles via laser annealing
Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner...
Saved in:
Published in: | Nanotechnology 2012-04, Vol.23 (14), p.145705-145705 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ∼8 nm NaYF4 nanocrystals (NCs) co-doped with 2% Er3+ and 20% Yb3+ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm−2 (∼354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/23/14/145705 |