Loading…
Automatic Parameter Estimation for the Discrete Algebraic Reconstruction Technique (DART)
Computed tomography (CT) is a technique for noninvasive imaging of physical objects. In the discrete algebraic reconstruction technique (DART), prior knowledge about the material's densities is exploited to obtain high quality reconstructed images from a limited number of its projections. In pr...
Saved in:
Published in: | IEEE transactions on image processing 2012-11, Vol.21 (11), p.4608-4621 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computed tomography (CT) is a technique for noninvasive imaging of physical objects. In the discrete algebraic reconstruction technique (DART), prior knowledge about the material's densities is exploited to obtain high quality reconstructed images from a limited number of its projections. In practice, this prior knowledge is typically not readily available. Here, a fully automatic method, called projection distance minimization DART (PDM-DART), is proposed in which the optimal grey level parameters are adaptively estimated during the reconstruction process. To apply PDM-DART, only the number of different grey levels should be known in advance. Simulation as well as real μCT experiments show that PDM-DART is capable of computing reconstructed images of which the quality is similar to reconstructions computed by conventional DART based on exact prior knowledge, thereby eliminating the need for tedious and error-prone user interaction. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2012.2206042 |