Loading…

Automatic Parameter Estimation for the Discrete Algebraic Reconstruction Technique (DART)

Computed tomography (CT) is a technique for noninvasive imaging of physical objects. In the discrete algebraic reconstruction technique (DART), prior knowledge about the material's densities is exploited to obtain high quality reconstructed images from a limited number of its projections. In pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2012-11, Vol.21 (11), p.4608-4621
Main Authors: van Aarle, W., Batenburg, K. J., Sijbers, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Computed tomography (CT) is a technique for noninvasive imaging of physical objects. In the discrete algebraic reconstruction technique (DART), prior knowledge about the material's densities is exploited to obtain high quality reconstructed images from a limited number of its projections. In practice, this prior knowledge is typically not readily available. Here, a fully automatic method, called projection distance minimization DART (PDM-DART), is proposed in which the optimal grey level parameters are adaptively estimated during the reconstruction process. To apply PDM-DART, only the number of different grey levels should be known in advance. Simulation as well as real μCT experiments show that PDM-DART is capable of computing reconstructed images of which the quality is similar to reconstructions computed by conventional DART based on exact prior knowledge, thereby eliminating the need for tedious and error-prone user interaction.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2012.2206042