Loading…

Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs

Posttranscriptional modifications of transfer RNAs (tRNAs) are critical for all core aspects of tRNA function, such as folding, stability, and decoding. Most tRNA modifications were discovered in the 1970s; however, the near-complete description of the genes required to introduce the full set of mod...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of genetics 2012-01, Vol.46 (1), p.69-95
Main Authors: El Yacoubi, Basma, Bailly, Marc, de Crécy-Lagard, Valérie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a505t-b7d6cf2f0e1517f2bf195743e31c519a4db2aba1242f142519919b4710ecfaff3
cites cdi_FETCH-LOGICAL-a505t-b7d6cf2f0e1517f2bf195743e31c519a4db2aba1242f142519919b4710ecfaff3
container_end_page 95
container_issue 1
container_start_page 69
container_title Annual review of genetics
container_volume 46
creator El Yacoubi, Basma
Bailly, Marc
de Crécy-Lagard, Valérie
description Posttranscriptional modifications of transfer RNAs (tRNAs) are critical for all core aspects of tRNA function, such as folding, stability, and decoding. Most tRNA modifications were discovered in the 1970s; however, the near-complete description of the genes required to introduce the full set of modifications in both yeast and Escherichia coli is very recent. This led to a new appreciation of the key roles of tRNA modifications and tRNA modification enzymes as checkpoints for tRNA integrity and for integrating translation with other cellular functions such as transcription, primary metabolism, and stress resistance. A global survey of tRNA modification enzymes shows that the functional constraints that drive the presence of modifications are often conserved, but the solutions used to fulfill these constraints differ among different kingdoms, organisms, and species.
doi_str_mv 10.1146/annurev-genet-110711-155641
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22905870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323801921</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-b7d6cf2f0e1517f2bf195743e31c519a4db2aba1242f142519919b4710ecfaff3</originalsourceid><addsrcrecordid>eNqVkU1LxDAQhoMo7vrxF6SwFy_VTJo0G7y4il_gF6LnkLaJZukma9Iq_ntbu3rwIp6GGZ55J-FBaAL4AIDmh8q5Nui39Fk73aQAmAOkwFhOYQ2NgVGWEkGn62iMcZ6nFAQfoa0Y5xhjygnbRCNCBGZTjsfo7sT6-OGaFx1tTJSrkvPWlY31LvEmufexaYJysQx22Q9Vndz4yhpbqr6NPfTYA0aH5OF2FnfQhlF11Luruo2ezs8eTy_T67uLq9PZdaoYZk1a8CovDTFYAwNuSGFAME4znUHJQChaFUQVCgglBijpRgJEQTlgXRplTLaN9ofcZfCvrY6NXNhY6rpWTvs2SshINsUgCPyNdk8QwDHBHTr5hc59G7pfryhO6LQPPBqoMvgYgzZyGexChQ8JWPaK5EqR_FIkB0VyUNRt761utMVCVz-730464HgA-hRVdzlWv8d_3fgEt52maQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151972481</pqid></control><display><type>article</type><title>Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs</title><source>Annual Reviews</source><creator>El Yacoubi, Basma ; Bailly, Marc ; de Crécy-Lagard, Valérie</creator><creatorcontrib>El Yacoubi, Basma ; Bailly, Marc ; de Crécy-Lagard, Valérie</creatorcontrib><description>Posttranscriptional modifications of transfer RNAs (tRNAs) are critical for all core aspects of tRNA function, such as folding, stability, and decoding. Most tRNA modifications were discovered in the 1970s; however, the near-complete description of the genes required to introduce the full set of modifications in both yeast and Escherichia coli is very recent. This led to a new appreciation of the key roles of tRNA modifications and tRNA modification enzymes as checkpoints for tRNA integrity and for integrating translation with other cellular functions such as transcription, primary metabolism, and stress resistance. A global survey of tRNA modification enzymes shows that the functional constraints that drive the presence of modifications are often conserved, but the solutions used to fulfill these constraints differ among different kingdoms, organisms, and species.</description><identifier>ISSN: 0066-4197</identifier><identifier>EISSN: 1545-2948</identifier><identifier>DOI: 10.1146/annurev-genet-110711-155641</identifier><identifier>PMID: 22905870</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Base Sequence ; Biosynthesis ; Codon - genetics ; Codon - metabolism ; Conserved Sequence ; E coli ; ELP ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genes ; genetic code ; KEOPS ; Nucleic Acid Conformation ; Phenotype ; Protein Biosynthesis ; queuosine ; Ribonucleic acid ; RNA ; RNA Cleavage ; RNA Processing, Post-Transcriptional ; RNA Stability ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; RNA, Transfer - biosynthesis ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; thiolation ; tRNA ; Yeast ; Yeasts</subject><ispartof>Annual review of genetics, 2012-01, Vol.46 (1), p.69-95</ispartof><rights>Copyright © 2012 by Annual Reviews. All rights reserved 2012</rights><rights>Copyright Annual Reviews, Inc. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-b7d6cf2f0e1517f2bf195743e31c519a4db2aba1242f142519919b4710ecfaff3</citedby><cites>FETCH-LOGICAL-a505t-b7d6cf2f0e1517f2bf195743e31c519a4db2aba1242f142519919b4710ecfaff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-genet-110711-155641?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-genet-110711-155641$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,78274,78379</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22905870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El Yacoubi, Basma</creatorcontrib><creatorcontrib>Bailly, Marc</creatorcontrib><creatorcontrib>de Crécy-Lagard, Valérie</creatorcontrib><title>Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs</title><title>Annual review of genetics</title><addtitle>Annu Rev Genet</addtitle><description>Posttranscriptional modifications of transfer RNAs (tRNAs) are critical for all core aspects of tRNA function, such as folding, stability, and decoding. Most tRNA modifications were discovered in the 1970s; however, the near-complete description of the genes required to introduce the full set of modifications in both yeast and Escherichia coli is very recent. This led to a new appreciation of the key roles of tRNA modifications and tRNA modification enzymes as checkpoints for tRNA integrity and for integrating translation with other cellular functions such as transcription, primary metabolism, and stress resistance. A global survey of tRNA modification enzymes shows that the functional constraints that drive the presence of modifications are often conserved, but the solutions used to fulfill these constraints differ among different kingdoms, organisms, and species.</description><subject>Base Sequence</subject><subject>Biosynthesis</subject><subject>Codon - genetics</subject><subject>Codon - metabolism</subject><subject>Conserved Sequence</subject><subject>E coli</subject><subject>ELP</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genes</subject><subject>genetic code</subject><subject>KEOPS</subject><subject>Nucleic Acid Conformation</subject><subject>Phenotype</subject><subject>Protein Biosynthesis</subject><subject>queuosine</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Cleavage</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA Stability</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA, Transfer - biosynthesis</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>thiolation</subject><subject>tRNA</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0066-4197</issn><issn>1545-2948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVkU1LxDAQhoMo7vrxF6SwFy_VTJo0G7y4il_gF6LnkLaJZukma9Iq_ntbu3rwIp6GGZ55J-FBaAL4AIDmh8q5Nui39Fk73aQAmAOkwFhOYQ2NgVGWEkGn62iMcZ6nFAQfoa0Y5xhjygnbRCNCBGZTjsfo7sT6-OGaFx1tTJSrkvPWlY31LvEmufexaYJysQx22Q9Vndz4yhpbqr6NPfTYA0aH5OF2FnfQhlF11Luruo2ezs8eTy_T67uLq9PZdaoYZk1a8CovDTFYAwNuSGFAME4znUHJQChaFUQVCgglBijpRgJEQTlgXRplTLaN9ofcZfCvrY6NXNhY6rpWTvs2SshINsUgCPyNdk8QwDHBHTr5hc59G7pfryhO6LQPPBqoMvgYgzZyGexChQ8JWPaK5EqR_FIkB0VyUNRt761utMVCVz-730464HgA-hRVdzlWv8d_3fgEt52maQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>El Yacoubi, Basma</creator><creator>Bailly, Marc</creator><creator>de Crécy-Lagard, Valérie</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs</title><author>El Yacoubi, Basma ; Bailly, Marc ; de Crécy-Lagard, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-b7d6cf2f0e1517f2bf195743e31c519a4db2aba1242f142519919b4710ecfaff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>Biosynthesis</topic><topic>Codon - genetics</topic><topic>Codon - metabolism</topic><topic>Conserved Sequence</topic><topic>E coli</topic><topic>ELP</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genes</topic><topic>genetic code</topic><topic>KEOPS</topic><topic>Nucleic Acid Conformation</topic><topic>Phenotype</topic><topic>Protein Biosynthesis</topic><topic>queuosine</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Cleavage</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA Stability</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA, Transfer - biosynthesis</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>thiolation</topic><topic>tRNA</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Yacoubi, Basma</creatorcontrib><creatorcontrib>Bailly, Marc</creatorcontrib><creatorcontrib>de Crécy-Lagard, Valérie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Yacoubi, Basma</au><au>Bailly, Marc</au><au>de Crécy-Lagard, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs</atitle><jtitle>Annual review of genetics</jtitle><addtitle>Annu Rev Genet</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>46</volume><issue>1</issue><spage>69</spage><epage>95</epage><pages>69-95</pages><issn>0066-4197</issn><eissn>1545-2948</eissn><abstract>Posttranscriptional modifications of transfer RNAs (tRNAs) are critical for all core aspects of tRNA function, such as folding, stability, and decoding. Most tRNA modifications were discovered in the 1970s; however, the near-complete description of the genes required to introduce the full set of modifications in both yeast and Escherichia coli is very recent. This led to a new appreciation of the key roles of tRNA modifications and tRNA modification enzymes as checkpoints for tRNA integrity and for integrating translation with other cellular functions such as transcription, primary metabolism, and stress resistance. A global survey of tRNA modification enzymes shows that the functional constraints that drive the presence of modifications are often conserved, but the solutions used to fulfill these constraints differ among different kingdoms, organisms, and species.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>22905870</pmid><doi>10.1146/annurev-genet-110711-155641</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0066-4197
ispartof Annual review of genetics, 2012-01, Vol.46 (1), p.69-95
issn 0066-4197
1545-2948
language eng
recordid cdi_pubmed_primary_22905870
source Annual Reviews
subjects Base Sequence
Biosynthesis
Codon - genetics
Codon - metabolism
Conserved Sequence
E coli
ELP
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Genes
genetic code
KEOPS
Nucleic Acid Conformation
Phenotype
Protein Biosynthesis
queuosine
Ribonucleic acid
RNA
RNA Cleavage
RNA Processing, Post-Transcriptional
RNA Stability
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Ribosomal - genetics
RNA, Ribosomal - metabolism
RNA, Transfer - biosynthesis
RNA, Transfer - genetics
RNA, Transfer - metabolism
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
thiolation
tRNA
Yeast
Yeasts
title Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20and%20Function%20of%20Posttranscriptional%20Modifications%20of%20Transfer%20RNAs&rft.jtitle=Annual%20review%20of%20genetics&rft.au=El%20Yacoubi,%20Basma&rft.date=2012-01-01&rft.volume=46&rft.issue=1&rft.spage=69&rft.epage=95&rft.pages=69-95&rft.issn=0066-4197&rft.eissn=1545-2948&rft_id=info:doi/10.1146/annurev-genet-110711-155641&rft_dat=%3Cproquest_pubme%3E1323801921%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a505t-b7d6cf2f0e1517f2bf195743e31c519a4db2aba1242f142519919b4710ecfaff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151972481&rft_id=info:pmid/22905870&rfr_iscdi=true